Dong Wu,Marc W Van Goethem,David W Graham,Xinnian Zhang,Zhe Li,Guitao Shi
{"title":"与人类和动物废物排放密切相关的南极环境抗性组。","authors":"Dong Wu,Marc W Van Goethem,David W Graham,Xinnian Zhang,Zhe Li,Guitao Shi","doi":"10.1021/acs.est.5c06023","DOIUrl":null,"url":null,"abstract":"Antarctica harbors a diverse spectrum of antibiotic resistance genes (ARGs) across lake, soil, and seawater environments. However, linkages between resistomes in waste-impacted and pristine settings are not well understood in polar settings, especially how phage, plasmids, and microbial community assembly influence the spatial distribution of ARGs. Metagenomic sequencing of 85 Antarctic samples showed 10-fold greater ARG abundances near animal and human waste-impacted sites compared with more remote settings, including glacial, lake, soil, and offshore seawater sites (-1.9 to -0.1 log10(ARGs/cell), P < 0.01), although (except for glaciers) resistome compositions were broadly similar. Based on metagenomic data, plasmids appear to be more associated with ARGs than phages in the Antarctic samples, with Pseudomonas, Staphylococcus, Bacillus, and Mycobacterium being primarily associated with ARG prevalence because they dominate local microbial assemblages. These primary taxa exhibit wide cross-setting prevalence and are not significantly impacted by local environmental selection (P > 0.05, SNPs-RDA). As such, human- and animal-waste-impacted locations, which have higher microbial migration rates (m = 10.8, NCM), are primary sources of ARG-containing and assembly predominant bacteria in Antarctic settings. Thus, better management of waste releases from human settlements must be central to retaining \"pristine\" Antarctic environments against the globally expanding resistomes.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"7 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antarctic Environmental Resistomes Closely Associated with Human and Animal Waste Releases.\",\"authors\":\"Dong Wu,Marc W Van Goethem,David W Graham,Xinnian Zhang,Zhe Li,Guitao Shi\",\"doi\":\"10.1021/acs.est.5c06023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antarctica harbors a diverse spectrum of antibiotic resistance genes (ARGs) across lake, soil, and seawater environments. However, linkages between resistomes in waste-impacted and pristine settings are not well understood in polar settings, especially how phage, plasmids, and microbial community assembly influence the spatial distribution of ARGs. Metagenomic sequencing of 85 Antarctic samples showed 10-fold greater ARG abundances near animal and human waste-impacted sites compared with more remote settings, including glacial, lake, soil, and offshore seawater sites (-1.9 to -0.1 log10(ARGs/cell), P < 0.01), although (except for glaciers) resistome compositions were broadly similar. Based on metagenomic data, plasmids appear to be more associated with ARGs than phages in the Antarctic samples, with Pseudomonas, Staphylococcus, Bacillus, and Mycobacterium being primarily associated with ARG prevalence because they dominate local microbial assemblages. These primary taxa exhibit wide cross-setting prevalence and are not significantly impacted by local environmental selection (P > 0.05, SNPs-RDA). As such, human- and animal-waste-impacted locations, which have higher microbial migration rates (m = 10.8, NCM), are primary sources of ARG-containing and assembly predominant bacteria in Antarctic settings. Thus, better management of waste releases from human settlements must be central to retaining \\\"pristine\\\" Antarctic environments against the globally expanding resistomes.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.5c06023\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.5c06023","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Antarctic Environmental Resistomes Closely Associated with Human and Animal Waste Releases.
Antarctica harbors a diverse spectrum of antibiotic resistance genes (ARGs) across lake, soil, and seawater environments. However, linkages between resistomes in waste-impacted and pristine settings are not well understood in polar settings, especially how phage, plasmids, and microbial community assembly influence the spatial distribution of ARGs. Metagenomic sequencing of 85 Antarctic samples showed 10-fold greater ARG abundances near animal and human waste-impacted sites compared with more remote settings, including glacial, lake, soil, and offshore seawater sites (-1.9 to -0.1 log10(ARGs/cell), P < 0.01), although (except for glaciers) resistome compositions were broadly similar. Based on metagenomic data, plasmids appear to be more associated with ARGs than phages in the Antarctic samples, with Pseudomonas, Staphylococcus, Bacillus, and Mycobacterium being primarily associated with ARG prevalence because they dominate local microbial assemblages. These primary taxa exhibit wide cross-setting prevalence and are not significantly impacted by local environmental selection (P > 0.05, SNPs-RDA). As such, human- and animal-waste-impacted locations, which have higher microbial migration rates (m = 10.8, NCM), are primary sources of ARG-containing and assembly predominant bacteria in Antarctic settings. Thus, better management of waste releases from human settlements must be central to retaining "pristine" Antarctic environments against the globally expanding resistomes.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.