[体内反射共聚焦显微镜与黑色素细胞肿瘤]。

IF 0.7
Charlotte Gust, Elke Sattler
{"title":"[体内反射共聚焦显微镜与黑色素细胞肿瘤]。","authors":"Charlotte Gust, Elke Sattler","doi":"10.1007/s00105-025-05568-z","DOIUrl":null,"url":null,"abstract":"<p><p>Reflectance confocal microscopy (RCM) is a noninvasive imaging technique offering high lateral resolution and is increasingly used in dermatology for differentiating benign from malignant melanocytic skin lesions such as nevi, melanoma, and lentigo maligna. By directing focused laser light into the skin and capturing reflected signals through a confocal aperture, horizontal optical sections of the epidermis and upper dermis can be generated with a resolution of 1-3 µm. Hallmarks of malignancy-such as pagetoid cells, nonedged papillae, and irregular nests-can be detected in vivo. The penetration depth of the technique is limited to approximately 250-300 µm. One of the key strengths of RCM lies in its ability to delineate tumor margins in lentigo maligna prior to surgical or laser-based therapy. In addition to reflectance imaging, fluorescence-based visualization is possible following topical or intradermal administration of contrast agents. Recent advances integrate artificial intelligence (AI) to assist in the automated analysis of RCM images. Early AI-based systems, such as MED-Net, have demonstrated promising sensitivity and specificity for identifying melanocytic structures. Overall, RCM-especially when combined with validated AI algorithms-represents a valuable extension of diagnostic capabilities in modern dermatologic oncology.</p>","PeriodicalId":72786,"journal":{"name":"Dermatologie (Heidelberg, Germany)","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[In vivo reflectance confocal microscopy and melanocytic tumors].\",\"authors\":\"Charlotte Gust, Elke Sattler\",\"doi\":\"10.1007/s00105-025-05568-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reflectance confocal microscopy (RCM) is a noninvasive imaging technique offering high lateral resolution and is increasingly used in dermatology for differentiating benign from malignant melanocytic skin lesions such as nevi, melanoma, and lentigo maligna. By directing focused laser light into the skin and capturing reflected signals through a confocal aperture, horizontal optical sections of the epidermis and upper dermis can be generated with a resolution of 1-3 µm. Hallmarks of malignancy-such as pagetoid cells, nonedged papillae, and irregular nests-can be detected in vivo. The penetration depth of the technique is limited to approximately 250-300 µm. One of the key strengths of RCM lies in its ability to delineate tumor margins in lentigo maligna prior to surgical or laser-based therapy. In addition to reflectance imaging, fluorescence-based visualization is possible following topical or intradermal administration of contrast agents. Recent advances integrate artificial intelligence (AI) to assist in the automated analysis of RCM images. Early AI-based systems, such as MED-Net, have demonstrated promising sensitivity and specificity for identifying melanocytic structures. Overall, RCM-especially when combined with validated AI algorithms-represents a valuable extension of diagnostic capabilities in modern dermatologic oncology.</p>\",\"PeriodicalId\":72786,\"journal\":{\"name\":\"Dermatologie (Heidelberg, Germany)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dermatologie (Heidelberg, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00105-025-05568-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dermatologie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00105-025-05568-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

反射共聚焦显微镜(RCM)是一种提供高横向分辨率的无创成像技术,越来越多地用于皮肤科区分良性和恶性黑素细胞性皮肤病变,如痣、黑色素瘤和恶性黄斑。通过将聚焦的激光射入皮肤,并通过共聚焦孔径捕获反射信号,可以生成表皮和真皮上部的水平光学切片,分辨率为1-3 µm。恶性肿瘤的特征,如页状细胞、无边缘的乳头和不规则的巢,在体内可以检测到。该技术的穿透深度被限制在大约250-300 µm。RCM的一个关键优势在于它能够在手术或激光治疗前划定恶性小透镜的肿瘤边缘。除了反射成像,在局部或皮内施用造影剂后,基于荧光的可视化是可能的。最近的进展集成了人工智能(AI)来协助RCM图像的自动分析。早期基于人工智能的系统,如MED-Net,在识别黑素细胞结构方面表现出了良好的敏感性和特异性。总的来说,rcm -特别是与经过验证的人工智能算法相结合时-代表了现代皮肤肿瘤学诊断能力的宝贵扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[In vivo reflectance confocal microscopy and melanocytic tumors].

Reflectance confocal microscopy (RCM) is a noninvasive imaging technique offering high lateral resolution and is increasingly used in dermatology for differentiating benign from malignant melanocytic skin lesions such as nevi, melanoma, and lentigo maligna. By directing focused laser light into the skin and capturing reflected signals through a confocal aperture, horizontal optical sections of the epidermis and upper dermis can be generated with a resolution of 1-3 µm. Hallmarks of malignancy-such as pagetoid cells, nonedged papillae, and irregular nests-can be detected in vivo. The penetration depth of the technique is limited to approximately 250-300 µm. One of the key strengths of RCM lies in its ability to delineate tumor margins in lentigo maligna prior to surgical or laser-based therapy. In addition to reflectance imaging, fluorescence-based visualization is possible following topical or intradermal administration of contrast agents. Recent advances integrate artificial intelligence (AI) to assist in the automated analysis of RCM images. Early AI-based systems, such as MED-Net, have demonstrated promising sensitivity and specificity for identifying melanocytic structures. Overall, RCM-especially when combined with validated AI algorithms-represents a valuable extension of diagnostic capabilities in modern dermatologic oncology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信