Keisha J Cook, Nathan Rayens, Linh Do, Christine K Payne, Scott A McKinley
{"title":"考虑实验帧率和分段线性粒子轨迹的鲁棒分割分析。","authors":"Keisha J Cook, Nathan Rayens, Linh Do, Christine K Payne, Scott A McKinley","doi":"10.3934/mbe.2025095","DOIUrl":null,"url":null,"abstract":"<p><p>The movement of intracellular cargo transported by molecular motors is commonly marked by switches between directed motion and stationary pauses. The predominant measure for assessing movement is effective diffusivity, which predicts the mean-squared displacement of particles over long timescales. In this work, we considered an alternative analysis regime that focused on shorter timescales and relied on automated segmentation of paths. Due to intrinsic uncertainty in changepoint analysis, we highlighted the importance of statistical summaries that were robust with respect to the performance of segmentation algorithms. In contrast to effective diffusivity, which averaged over multiple behaviors, we emphasized tools that highlighted the different motor-cargo states, with an eye toward identifying biophysical mechanisms that determined emergent whole-cell transport properties. By developing a Markov chain model for noisy, continuous, piecewise-linear microparticle movement, and associated mathematical analysis, we provided insight into a common question posed by experimentalists: how does the choice of observational frame rate affect what is inferred about transport properties?</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 10","pages":"2595-2626"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Considering experimental frame rates and robust segmentation analysis of piecewise-linear microparticle trajectories.\",\"authors\":\"Keisha J Cook, Nathan Rayens, Linh Do, Christine K Payne, Scott A McKinley\",\"doi\":\"10.3934/mbe.2025095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The movement of intracellular cargo transported by molecular motors is commonly marked by switches between directed motion and stationary pauses. The predominant measure for assessing movement is effective diffusivity, which predicts the mean-squared displacement of particles over long timescales. In this work, we considered an alternative analysis regime that focused on shorter timescales and relied on automated segmentation of paths. Due to intrinsic uncertainty in changepoint analysis, we highlighted the importance of statistical summaries that were robust with respect to the performance of segmentation algorithms. In contrast to effective diffusivity, which averaged over multiple behaviors, we emphasized tools that highlighted the different motor-cargo states, with an eye toward identifying biophysical mechanisms that determined emergent whole-cell transport properties. By developing a Markov chain model for noisy, continuous, piecewise-linear microparticle movement, and associated mathematical analysis, we provided insight into a common question posed by experimentalists: how does the choice of observational frame rate affect what is inferred about transport properties?</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"22 10\",\"pages\":\"2595-2626\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2025095\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025095","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Considering experimental frame rates and robust segmentation analysis of piecewise-linear microparticle trajectories.
The movement of intracellular cargo transported by molecular motors is commonly marked by switches between directed motion and stationary pauses. The predominant measure for assessing movement is effective diffusivity, which predicts the mean-squared displacement of particles over long timescales. In this work, we considered an alternative analysis regime that focused on shorter timescales and relied on automated segmentation of paths. Due to intrinsic uncertainty in changepoint analysis, we highlighted the importance of statistical summaries that were robust with respect to the performance of segmentation algorithms. In contrast to effective diffusivity, which averaged over multiple behaviors, we emphasized tools that highlighted the different motor-cargo states, with an eye toward identifying biophysical mechanisms that determined emergent whole-cell transport properties. By developing a Markov chain model for noisy, continuous, piecewise-linear microparticle movement, and associated mathematical analysis, we provided insight into a common question posed by experimentalists: how does the choice of observational frame rate affect what is inferred about transport properties?
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).