包含Holling ii型功能反应的捕食-食饵系统的稳定性和分岔分析。

IF 2.6 4区 工程技术 Q1 Mathematics
Jocirei D Ferreira, Wilmer L Molina, Jhon J Perez, Aida P González
{"title":"包含Holling ii型功能反应的捕食-食饵系统的稳定性和分岔分析。","authors":"Jocirei D Ferreira, Wilmer L Molina, Jhon J Perez, Aida P González","doi":"10.3934/mbe.2025094","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we focused on the study of codimension-one Hopf bifurcations and the associated Lyapunov stability coefficients in the context of general two-dimensional reaction-diffusion systems defined on a finite fixed-length segment. Algebraic expressions for the first Lyapunov coefficients are provided for the infinite-dimensional system subject to Neumann boundary conditions. As an application, a diffusive predator-prey system modeling competing populations with a Holling type-II functional response for the predator was analyzed and studied under Neumann boundary conditions. Our main goal is to perform a detailed, local stability analysis of the proposed model, showing the existence of multiple spatially homogeneous and non-homogeneous periodic orbits, arising from the occurrence of a codimension-one Hopf bifurcation.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 10","pages":"2559-2594"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and bifurcation analysis in predator-prey system involving Holling type-II functional response.\",\"authors\":\"Jocirei D Ferreira, Wilmer L Molina, Jhon J Perez, Aida P González\",\"doi\":\"10.3934/mbe.2025094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, we focused on the study of codimension-one Hopf bifurcations and the associated Lyapunov stability coefficients in the context of general two-dimensional reaction-diffusion systems defined on a finite fixed-length segment. Algebraic expressions for the first Lyapunov coefficients are provided for the infinite-dimensional system subject to Neumann boundary conditions. As an application, a diffusive predator-prey system modeling competing populations with a Holling type-II functional response for the predator was analyzed and studied under Neumann boundary conditions. Our main goal is to perform a detailed, local stability analysis of the proposed model, showing the existence of multiple spatially homogeneous and non-homogeneous periodic orbits, arising from the occurrence of a codimension-one Hopf bifurcation.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"22 10\",\"pages\":\"2559-2594\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2025094\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025094","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们集中研究了在有限定长段上定义的一般二维反应扩散系统的共维1 Hopf分岔和相关的Lyapunov稳定性系数。给出了受诺伊曼边界条件约束的无限维系统的第一Lyapunov系数的代数表达式。作为应用,在Neumann边界条件下,对具有Holling ii型功能响应的扩散捕食者-食饵系统进行了分析和研究。我们的主要目标是对所提出的模型进行详细的局部稳定性分析,显示出多个空间均匀和非均匀周期轨道的存在,这些轨道是由共维1 Hopf分岔的发生引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and bifurcation analysis in predator-prey system involving Holling type-II functional response.

In this article, we focused on the study of codimension-one Hopf bifurcations and the associated Lyapunov stability coefficients in the context of general two-dimensional reaction-diffusion systems defined on a finite fixed-length segment. Algebraic expressions for the first Lyapunov coefficients are provided for the infinite-dimensional system subject to Neumann boundary conditions. As an application, a diffusive predator-prey system modeling competing populations with a Holling type-II functional response for the predator was analyzed and studied under Neumann boundary conditions. Our main goal is to perform a detailed, local stability analysis of the proposed model, showing the existence of multiple spatially homogeneous and non-homogeneous periodic orbits, arising from the occurrence of a codimension-one Hopf bifurcation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信