整合肿瘤侵袭的随机趋化-趋化机制:多尺度推导和计算视角。

IF 2.6 4区 工程技术 Q1 Mathematics
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Jacques Tagoudjeu, Mohamed Zagour
{"title":"整合肿瘤侵袭的随机趋化-趋化机制:多尺度推导和计算视角。","authors":"Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Jacques Tagoudjeu, Mohamed Zagour","doi":"10.3934/mbe.2025097","DOIUrl":null,"url":null,"abstract":"<p><p>This paper deals with the multiscale derivation of a nonlinear stochastic chemotaxis-haptotaxis system of cancerous tissue invasion from a new stochastic kinetic theory model based on the micro-macro decomposition technique. We show that this approach technically can lead to some systems known in the literature, such as the filling volume effect, and a new system by taking the stochasticity effect and nonlocal diffusion into account. We develop an asymptotic-preserving numerical scheme to solve the obtained equivalent micro-macro formulation numerically. The objective is to provide a uniformly stable scheme regarding the small parameters and consistency with the diffusion limit. Various numerical examples validate the proposed approach. Finally, we provide numerical simulations in the two-dimensional setting obtained by the macroscopic stochastic model.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 10","pages":"2641-2671"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating stochastic chemotaxis-haptotaxis mechanisms in cancer invasion: A multiscale derivation and computational perspective.\",\"authors\":\"Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Jacques Tagoudjeu, Mohamed Zagour\",\"doi\":\"10.3934/mbe.2025097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper deals with the multiscale derivation of a nonlinear stochastic chemotaxis-haptotaxis system of cancerous tissue invasion from a new stochastic kinetic theory model based on the micro-macro decomposition technique. We show that this approach technically can lead to some systems known in the literature, such as the filling volume effect, and a new system by taking the stochasticity effect and nonlocal diffusion into account. We develop an asymptotic-preserving numerical scheme to solve the obtained equivalent micro-macro formulation numerically. The objective is to provide a uniformly stable scheme regarding the small parameters and consistency with the diffusion limit. Various numerical examples validate the proposed approach. Finally, we provide numerical simulations in the two-dimensional setting obtained by the macroscopic stochastic model.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"22 10\",\"pages\":\"2641-2671\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2025097\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025097","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文利用一种新的基于微观-宏观分解技术的随机动力学模型,对癌变组织侵袭的非线性随机趋化-趋化系统进行了多尺度推导。我们表明,这种方法在技术上可以导致一些已知的系统,如填充体积效应,以及一个考虑随机效应和非局部扩散的新系统。我们建立了一个渐近保持的数值格式,对得到的等效微观-宏观公式进行了数值求解。目的是提供一个参数小且符合扩散极限的一致稳定格式。数值算例验证了该方法的有效性。最后,给出了宏观随机模型在二维环境下的数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating stochastic chemotaxis-haptotaxis mechanisms in cancer invasion: A multiscale derivation and computational perspective.

This paper deals with the multiscale derivation of a nonlinear stochastic chemotaxis-haptotaxis system of cancerous tissue invasion from a new stochastic kinetic theory model based on the micro-macro decomposition technique. We show that this approach technically can lead to some systems known in the literature, such as the filling volume effect, and a new system by taking the stochasticity effect and nonlocal diffusion into account. We develop an asymptotic-preserving numerical scheme to solve the obtained equivalent micro-macro formulation numerically. The objective is to provide a uniformly stable scheme regarding the small parameters and consistency with the diffusion limit. Various numerical examples validate the proposed approach. Finally, we provide numerical simulations in the two-dimensional setting obtained by the macroscopic stochastic model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信