可解释的人工智能用于炎症性肠病的个性化管理:最近进展的综述。

IF 5.4 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Uchenna E Okpete, Haewon Byeon
{"title":"可解释的人工智能用于炎症性肠病的个性化管理:最近进展的综述。","authors":"Uchenna E Okpete, Haewon Byeon","doi":"10.3748/wjg.v31.i35.111033","DOIUrl":null,"url":null,"abstract":"<p><p>Personalized management of inflammatory bowel disease (IBD) is crucial due to the heterogeneity in disease presentation, variable therapeutic response, and the unpredictable nature of disease progression. Although artificial intelligence (AI) and machine learning algorithms offer promising solutions by analyzing complex, multidimensional patient data, the \"black-box\" nature of many AI models limits their clinical adoption. Explainable AI (XAI) addresses this challenge by making data-driven predictions more transparent and clinically actionable. This minireview focuses on recent advancements and clinical relevance of integrating XAI for personalized IBD management. We explore the importance of XAI in prioritizing treatment and highlight how XAI techniques, such as feature-attribution explanations and interpretable model architectures, enhance transparency in AI models. In recent years, XAI models have been applied to diagnose IBD anomalies by prioritizing the predictive features for gastrointestinal bleeding and dietary intake patterns. Furthermore, studies have revealed that XAI application enhances IBD risk stratification and improves the prediction of drug efficacy and patient responses with high accuracy. By transforming opaque AI models into interpretable tools, XAI fosters clinician trust, supports personalized decision-making, and enables the safe deployment of AI systems in sensitive, individualized IBD care pathways.</p>","PeriodicalId":23778,"journal":{"name":"World Journal of Gastroenterology","volume":"31 35","pages":"111033"},"PeriodicalIF":5.4000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476648/pdf/","citationCount":"0","resultStr":"{\"title\":\"Explainable artificial intelligence for personalized management of inflammatory bowel disease: A minireview of recent advances.\",\"authors\":\"Uchenna E Okpete, Haewon Byeon\",\"doi\":\"10.3748/wjg.v31.i35.111033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Personalized management of inflammatory bowel disease (IBD) is crucial due to the heterogeneity in disease presentation, variable therapeutic response, and the unpredictable nature of disease progression. Although artificial intelligence (AI) and machine learning algorithms offer promising solutions by analyzing complex, multidimensional patient data, the \\\"black-box\\\" nature of many AI models limits their clinical adoption. Explainable AI (XAI) addresses this challenge by making data-driven predictions more transparent and clinically actionable. This minireview focuses on recent advancements and clinical relevance of integrating XAI for personalized IBD management. We explore the importance of XAI in prioritizing treatment and highlight how XAI techniques, such as feature-attribution explanations and interpretable model architectures, enhance transparency in AI models. In recent years, XAI models have been applied to diagnose IBD anomalies by prioritizing the predictive features for gastrointestinal bleeding and dietary intake patterns. Furthermore, studies have revealed that XAI application enhances IBD risk stratification and improves the prediction of drug efficacy and patient responses with high accuracy. By transforming opaque AI models into interpretable tools, XAI fosters clinician trust, supports personalized decision-making, and enables the safe deployment of AI systems in sensitive, individualized IBD care pathways.</p>\",\"PeriodicalId\":23778,\"journal\":{\"name\":\"World Journal of Gastroenterology\",\"volume\":\"31 35\",\"pages\":\"111033\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476648/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Gastroenterology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3748/wjg.v31.i35.111033\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3748/wjg.v31.i35.111033","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

炎症性肠病(IBD)的个性化管理是至关重要的,因为疾病表现的异质性,治疗反应的变化,以及疾病进展的不可预测性。尽管人工智能(AI)和机器学习算法通过分析复杂的、多维的患者数据提供了有前途的解决方案,但许多AI模型的“黑箱”性质限制了它们的临床应用。可解释人工智能(XAI)通过使数据驱动的预测更加透明和临床可操作,解决了这一挑战。这篇小型综述的重点是最近的进展和整合XAI进行个性化IBD治疗的临床意义。我们探讨了XAI在优先处理方面的重要性,并强调了XAI技术(如特征归因解释和可解释的模型架构)如何提高AI模型的透明度。近年来,通过优先考虑胃肠道出血和饮食摄入模式的预测特征,XAI模型已被用于诊断IBD异常。此外,研究表明,应用XAI可增强IBD风险分层,提高对药物疗效和患者反应的预测准确性。通过将不透明的人工智能模型转化为可解释的工具,XAI促进了临床医生的信任,支持个性化决策,并使人工智能系统能够在敏感的、个性化的IBD护理途径中安全部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Explainable artificial intelligence for personalized management of inflammatory bowel disease: A minireview of recent advances.

Explainable artificial intelligence for personalized management of inflammatory bowel disease: A minireview of recent advances.

Explainable artificial intelligence for personalized management of inflammatory bowel disease: A minireview of recent advances.

Personalized management of inflammatory bowel disease (IBD) is crucial due to the heterogeneity in disease presentation, variable therapeutic response, and the unpredictable nature of disease progression. Although artificial intelligence (AI) and machine learning algorithms offer promising solutions by analyzing complex, multidimensional patient data, the "black-box" nature of many AI models limits their clinical adoption. Explainable AI (XAI) addresses this challenge by making data-driven predictions more transparent and clinically actionable. This minireview focuses on recent advancements and clinical relevance of integrating XAI for personalized IBD management. We explore the importance of XAI in prioritizing treatment and highlight how XAI techniques, such as feature-attribution explanations and interpretable model architectures, enhance transparency in AI models. In recent years, XAI models have been applied to diagnose IBD anomalies by prioritizing the predictive features for gastrointestinal bleeding and dietary intake patterns. Furthermore, studies have revealed that XAI application enhances IBD risk stratification and improves the prediction of drug efficacy and patient responses with high accuracy. By transforming opaque AI models into interpretable tools, XAI fosters clinician trust, supports personalized decision-making, and enables the safe deployment of AI systems in sensitive, individualized IBD care pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Journal of Gastroenterology
World Journal of Gastroenterology 医学-胃肠肝病学
CiteScore
7.80
自引率
4.70%
发文量
464
审稿时长
2.4 months
期刊介绍: The primary aims of the WJG are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in gastroenterology and hepatology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信