{"title":"人工智能在胃癌前病变筛查和医学影像学中的作用。","authors":"Sergey M Kotelevets","doi":"10.5306/wjco.v16.i9.107993","DOIUrl":null,"url":null,"abstract":"<p><p>Serological screening, endoscopic imaging, morphological visual verification of precancerous gastric diseases and changes in the gastric mucosa are the main stages of early detection, accurate diagnosis and preventive treatment of gastric precancer. Laboratory - serological, endoscopic and histological diagnostics are carried out by medical laboratory technicians, endoscopists, and histologists. Human factors have a very large share of subjectivity. Endoscopists and histologists are guided by the descriptive principle when formulating imaging conclusions. Diagnostic reports from doctors often result in contradictory and mutually exclusive conclusions. Erroneous results of diagnosticians and clinicians have fatal consequences, such as late diagnosis of gastric cancer and high mortality of patients. Effective population serological screening is only possible with the use of machine processing of laboratory test results. Currently, it is possible to replace subjective imprecise description of endoscopic and histological images by a diagnostician with objective, highly sensitive and highly specific visual recognition using convolutional neural networks with deep machine learning. There are many machine learning models to use. All machine learning models have predictive capabilities. Based on predictive models, it is necessary to identify the risk levels of gastric cancer in patients with a very high probability.</p>","PeriodicalId":23802,"journal":{"name":"World journal of clinical oncology","volume":"16 9","pages":"107993"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476598/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of artificial intelligence in screening and medical imaging of precancerous gastric diseases.\",\"authors\":\"Sergey M Kotelevets\",\"doi\":\"10.5306/wjco.v16.i9.107993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Serological screening, endoscopic imaging, morphological visual verification of precancerous gastric diseases and changes in the gastric mucosa are the main stages of early detection, accurate diagnosis and preventive treatment of gastric precancer. Laboratory - serological, endoscopic and histological diagnostics are carried out by medical laboratory technicians, endoscopists, and histologists. Human factors have a very large share of subjectivity. Endoscopists and histologists are guided by the descriptive principle when formulating imaging conclusions. Diagnostic reports from doctors often result in contradictory and mutually exclusive conclusions. Erroneous results of diagnosticians and clinicians have fatal consequences, such as late diagnosis of gastric cancer and high mortality of patients. Effective population serological screening is only possible with the use of machine processing of laboratory test results. Currently, it is possible to replace subjective imprecise description of endoscopic and histological images by a diagnostician with objective, highly sensitive and highly specific visual recognition using convolutional neural networks with deep machine learning. There are many machine learning models to use. All machine learning models have predictive capabilities. Based on predictive models, it is necessary to identify the risk levels of gastric cancer in patients with a very high probability.</p>\",\"PeriodicalId\":23802,\"journal\":{\"name\":\"World journal of clinical oncology\",\"volume\":\"16 9\",\"pages\":\"107993\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476598/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of clinical oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5306/wjco.v16.i9.107993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of clinical oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5306/wjco.v16.i9.107993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Role of artificial intelligence in screening and medical imaging of precancerous gastric diseases.
Serological screening, endoscopic imaging, morphological visual verification of precancerous gastric diseases and changes in the gastric mucosa are the main stages of early detection, accurate diagnosis and preventive treatment of gastric precancer. Laboratory - serological, endoscopic and histological diagnostics are carried out by medical laboratory technicians, endoscopists, and histologists. Human factors have a very large share of subjectivity. Endoscopists and histologists are guided by the descriptive principle when formulating imaging conclusions. Diagnostic reports from doctors often result in contradictory and mutually exclusive conclusions. Erroneous results of diagnosticians and clinicians have fatal consequences, such as late diagnosis of gastric cancer and high mortality of patients. Effective population serological screening is only possible with the use of machine processing of laboratory test results. Currently, it is possible to replace subjective imprecise description of endoscopic and histological images by a diagnostician with objective, highly sensitive and highly specific visual recognition using convolutional neural networks with deep machine learning. There are many machine learning models to use. All machine learning models have predictive capabilities. Based on predictive models, it is necessary to identify the risk levels of gastric cancer in patients with a very high probability.
期刊介绍:
The WJCO is a high-quality, peer reviewed, open-access journal. The primary task of WJCO is to rapidly publish high-quality original articles, reviews, editorials, and case reports in the field of oncology. In order to promote productive academic communication, the peer review process for the WJCO is transparent; to this end, all published manuscripts are accompanied by the anonymized reviewers’ comments as well as the authors’ responses. The primary aims of the WJCO are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in oncology. Scope: Art of Oncology, Biology of Neoplasia, Breast Cancer, Cancer Prevention and Control, Cancer-Related Complications, Diagnosis in Oncology, Gastrointestinal Cancer, Genetic Testing For Cancer, Gynecologic Cancer, Head and Neck Cancer, Hematologic Malignancy, Lung Cancer, Melanoma, Molecular Oncology, Neurooncology, Palliative and Supportive Care, Pediatric Oncology, Surgical Oncology, Translational Oncology, and Urologic Oncology.