{"title":"从转座子墓地升起的卫星dna。","authors":"Eva Šatović-Vukšić, Patrik Majcen, Miroslav Plohl","doi":"10.1093/dnares/dsaf026","DOIUrl":null,"url":null,"abstract":"<p><p>Repetitive DNA sequences, as transposable elements (TEs) and satellite DNA (satDNA) spread and diversify within host genomes, impacting genome biology in numerous ways. In the first part of this review, we emphasize the evolutionary importance of satDNAs and TEs, providing a short summary of their roles and the mechanisms by which they influence the structure and function of genomes. We also discuss the broad, complex, and extensive relationships between TEs and satDNAs. Following that, we bring together different mechanisms on the generation of satDNA from TE, as it has been demonstrated that almost any part of any type of TE can undergo tandemization and produce novel satDNAs. Importantly, we here present a hypothesis that would explain the existence of particular types of monomers, namely composite satDNA monomers which display multiple subsequent stretches of similarity to various TEs, for which the explanation was lacking so far. We propose that even highly shuffled and degraded TE remnants residing in heterochromatin \"TE graveyards\" can give rise to new satDNA sequence monomers, transforming these genomic loci into DNA \"recycling yards.\" Furthermore, we emphasize important evolutionary questions regarding the causes, mechanisms, and frequency of these occurrences.</p>","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Satellite DNAs rising from the transposon graveyards.\",\"authors\":\"Eva Šatović-Vukšić, Patrik Majcen, Miroslav Plohl\",\"doi\":\"10.1093/dnares/dsaf026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Repetitive DNA sequences, as transposable elements (TEs) and satellite DNA (satDNA) spread and diversify within host genomes, impacting genome biology in numerous ways. In the first part of this review, we emphasize the evolutionary importance of satDNAs and TEs, providing a short summary of their roles and the mechanisms by which they influence the structure and function of genomes. We also discuss the broad, complex, and extensive relationships between TEs and satDNAs. Following that, we bring together different mechanisms on the generation of satDNA from TE, as it has been demonstrated that almost any part of any type of TE can undergo tandemization and produce novel satDNAs. Importantly, we here present a hypothesis that would explain the existence of particular types of monomers, namely composite satDNA monomers which display multiple subsequent stretches of similarity to various TEs, for which the explanation was lacking so far. We propose that even highly shuffled and degraded TE remnants residing in heterochromatin \\\"TE graveyards\\\" can give rise to new satDNA sequence monomers, transforming these genomic loci into DNA \\\"recycling yards.\\\" Furthermore, we emphasize important evolutionary questions regarding the causes, mechanisms, and frequency of these occurrences.</p>\",\"PeriodicalId\":51014,\"journal\":{\"name\":\"DNA Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/dnares/dsaf026\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsaf026","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Satellite DNAs rising from the transposon graveyards.
Repetitive DNA sequences, as transposable elements (TEs) and satellite DNA (satDNA) spread and diversify within host genomes, impacting genome biology in numerous ways. In the first part of this review, we emphasize the evolutionary importance of satDNAs and TEs, providing a short summary of their roles and the mechanisms by which they influence the structure and function of genomes. We also discuss the broad, complex, and extensive relationships between TEs and satDNAs. Following that, we bring together different mechanisms on the generation of satDNA from TE, as it has been demonstrated that almost any part of any type of TE can undergo tandemization and produce novel satDNAs. Importantly, we here present a hypothesis that would explain the existence of particular types of monomers, namely composite satDNA monomers which display multiple subsequent stretches of similarity to various TEs, for which the explanation was lacking so far. We propose that even highly shuffled and degraded TE remnants residing in heterochromatin "TE graveyards" can give rise to new satDNA sequence monomers, transforming these genomic loci into DNA "recycling yards." Furthermore, we emphasize important evolutionary questions regarding the causes, mechanisms, and frequency of these occurrences.
期刊介绍:
DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.