{"title":"长时间的胰高血糖素暴露会导致脂质氧化并驱动糖尿病肾病的进展。","authors":"Xingfeng Liu, Jingwen Chen, Shengying Gu, Yibing Chen, Ruiping Zhang, Qingce Zang, Ting Li, Hanwen Li, Dejin Lu, Shaocong Hou, Lijuan Kong, Qian Jiang, Caiyi Xing, Wenjia Fan, Yanjun Wan, Jiaqi Zhang, Linyuan Zhu, Chunxiao Ma, Qijin Zhao, Hai Yan, Zeper Abliz, Bing Cui, Pingping Li","doi":"10.1038/s41467-025-63529-5","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. Tubular abnormalities may precede glomerular pathology and indicate functional progression of DKD. Here, we find glucagon injection exacerbates lipid accumulation and renal injury, in addition to causing morphological changes in proximal tubules, podocytes, and mitochondria in the early phase of DKD in mice. However, the specific knockdown or knockout of Gcgr in renal tubular epithelial cells almost completely halts DKD development. In contrast to the effect of short-term glucagon stimulation, long-term glucagon exposure leads to the reversal of glucagon action (glucagon reversal) in proximal tubular epithelial cells (PTECs), which is characterized by reduced energy production and an increase in lipogenesis through Gcgr-PKA-Creb-mTORC1 pathway. Accordingly, anti-GCGR antibody treatment strongly blocks the pathogenesis of DKD induced by both type 2 and type 1 diabetes. Thus, our results highlight a previously unrecognized role of glucagon/Gcgr signaling in PTEC lipogenesis and DKD.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8561"},"PeriodicalIF":15.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479795/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prolonged glucagon exposure rewires lipid oxidation and drives diabetic kidney disease progression.\",\"authors\":\"Xingfeng Liu, Jingwen Chen, Shengying Gu, Yibing Chen, Ruiping Zhang, Qingce Zang, Ting Li, Hanwen Li, Dejin Lu, Shaocong Hou, Lijuan Kong, Qian Jiang, Caiyi Xing, Wenjia Fan, Yanjun Wan, Jiaqi Zhang, Linyuan Zhu, Chunxiao Ma, Qijin Zhao, Hai Yan, Zeper Abliz, Bing Cui, Pingping Li\",\"doi\":\"10.1038/s41467-025-63529-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. Tubular abnormalities may precede glomerular pathology and indicate functional progression of DKD. Here, we find glucagon injection exacerbates lipid accumulation and renal injury, in addition to causing morphological changes in proximal tubules, podocytes, and mitochondria in the early phase of DKD in mice. However, the specific knockdown or knockout of Gcgr in renal tubular epithelial cells almost completely halts DKD development. In contrast to the effect of short-term glucagon stimulation, long-term glucagon exposure leads to the reversal of glucagon action (glucagon reversal) in proximal tubular epithelial cells (PTECs), which is characterized by reduced energy production and an increase in lipogenesis through Gcgr-PKA-Creb-mTORC1 pathway. Accordingly, anti-GCGR antibody treatment strongly blocks the pathogenesis of DKD induced by both type 2 and type 1 diabetes. Thus, our results highlight a previously unrecognized role of glucagon/Gcgr signaling in PTEC lipogenesis and DKD.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"8561\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479795/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63529-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63529-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. Tubular abnormalities may precede glomerular pathology and indicate functional progression of DKD. Here, we find glucagon injection exacerbates lipid accumulation and renal injury, in addition to causing morphological changes in proximal tubules, podocytes, and mitochondria in the early phase of DKD in mice. However, the specific knockdown or knockout of Gcgr in renal tubular epithelial cells almost completely halts DKD development. In contrast to the effect of short-term glucagon stimulation, long-term glucagon exposure leads to the reversal of glucagon action (glucagon reversal) in proximal tubular epithelial cells (PTECs), which is characterized by reduced energy production and an increase in lipogenesis through Gcgr-PKA-Creb-mTORC1 pathway. Accordingly, anti-GCGR antibody treatment strongly blocks the pathogenesis of DKD induced by both type 2 and type 1 diabetes. Thus, our results highlight a previously unrecognized role of glucagon/Gcgr signaling in PTEC lipogenesis and DKD.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.