Subhash Chandra Patel, Rajesh N Kamath, T S N Murthy, K Subash, J Avanija, M Sangeetha
{"title":"用扩散前和克罗搜索优化提高显微图像质量。","authors":"Subhash Chandra Patel, Rajesh N Kamath, T S N Murthy, K Subash, J Avanija, M Sangeetha","doi":"10.1002/jemt.70072","DOIUrl":null,"url":null,"abstract":"<p><p>Medical Image plays a vital role in diagnosis, but noise in patient scans severely affects the accuracy and quality of images. Denoising methods are important to increase the clarity of these images, particularly in low-resource settings where current diagnostic roles are inaccessible. Pneumonia is a widespread disease that presents significant diagnostic challenges due to the high similarity between its various types and the lack of medical images for emerging variants. This study introduces a novel Diffusion with swin transformer-based Optimized Crow Search algorithm to increase the image's quality and reliability. This technique utilizes four datasets such as brain tumor MRI dataset, chest X-ray image, chest CT-scan image, and BUSI. The preprocessing steps involve conversion to grayscale, resizing, and normalization to improve image quality in medical image (MI) datasets. Gaussian noise is introduced to further enhance image quality. The method incorporates a diffusion process, swin transformer networks, and optimized crow search algorithm to improve the denoising of medical images. The diffusion process reduces noise by iteratively refining images while swin transformer captures complex image features that help differentiate between noise and essential diagnostic information. The crow search optimization algorithm fine-tunes the hyperparameters, which minimizes the fitness function for optimal denoising performance. The method is tested across four datasets, indicating its optimal effectiveness against other techniques. The proposed method achieves a peak signal-to-noise ratio of 38.47 dB, a structural similarity index measure of 98.14%, a mean squared error of 0.55, and a feature similarity index measure of 0.980, which outperforms existing techniques. These outcomes reflect that the proposed approach effectively enhances the quality of images, resulting in precise and dependable diagnoses.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Microscopic Image Quality With DiffusionFormer and Crow Search Optimization.\",\"authors\":\"Subhash Chandra Patel, Rajesh N Kamath, T S N Murthy, K Subash, J Avanija, M Sangeetha\",\"doi\":\"10.1002/jemt.70072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical Image plays a vital role in diagnosis, but noise in patient scans severely affects the accuracy and quality of images. Denoising methods are important to increase the clarity of these images, particularly in low-resource settings where current diagnostic roles are inaccessible. Pneumonia is a widespread disease that presents significant diagnostic challenges due to the high similarity between its various types and the lack of medical images for emerging variants. This study introduces a novel Diffusion with swin transformer-based Optimized Crow Search algorithm to increase the image's quality and reliability. This technique utilizes four datasets such as brain tumor MRI dataset, chest X-ray image, chest CT-scan image, and BUSI. The preprocessing steps involve conversion to grayscale, resizing, and normalization to improve image quality in medical image (MI) datasets. Gaussian noise is introduced to further enhance image quality. The method incorporates a diffusion process, swin transformer networks, and optimized crow search algorithm to improve the denoising of medical images. The diffusion process reduces noise by iteratively refining images while swin transformer captures complex image features that help differentiate between noise and essential diagnostic information. The crow search optimization algorithm fine-tunes the hyperparameters, which minimizes the fitness function for optimal denoising performance. The method is tested across four datasets, indicating its optimal effectiveness against other techniques. The proposed method achieves a peak signal-to-noise ratio of 38.47 dB, a structural similarity index measure of 98.14%, a mean squared error of 0.55, and a feature similarity index measure of 0.980, which outperforms existing techniques. These outcomes reflect that the proposed approach effectively enhances the quality of images, resulting in precise and dependable diagnoses.</p>\",\"PeriodicalId\":18684,\"journal\":{\"name\":\"Microscopy Research and Technique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy Research and Technique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.70072\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.70072","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Enhancing Microscopic Image Quality With DiffusionFormer and Crow Search Optimization.
Medical Image plays a vital role in diagnosis, but noise in patient scans severely affects the accuracy and quality of images. Denoising methods are important to increase the clarity of these images, particularly in low-resource settings where current diagnostic roles are inaccessible. Pneumonia is a widespread disease that presents significant diagnostic challenges due to the high similarity between its various types and the lack of medical images for emerging variants. This study introduces a novel Diffusion with swin transformer-based Optimized Crow Search algorithm to increase the image's quality and reliability. This technique utilizes four datasets such as brain tumor MRI dataset, chest X-ray image, chest CT-scan image, and BUSI. The preprocessing steps involve conversion to grayscale, resizing, and normalization to improve image quality in medical image (MI) datasets. Gaussian noise is introduced to further enhance image quality. The method incorporates a diffusion process, swin transformer networks, and optimized crow search algorithm to improve the denoising of medical images. The diffusion process reduces noise by iteratively refining images while swin transformer captures complex image features that help differentiate between noise and essential diagnostic information. The crow search optimization algorithm fine-tunes the hyperparameters, which minimizes the fitness function for optimal denoising performance. The method is tested across four datasets, indicating its optimal effectiveness against other techniques. The proposed method achieves a peak signal-to-noise ratio of 38.47 dB, a structural similarity index measure of 98.14%, a mean squared error of 0.55, and a feature similarity index measure of 0.980, which outperforms existing techniques. These outcomes reflect that the proposed approach effectively enhances the quality of images, resulting in precise and dependable diagnoses.
期刊介绍:
Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.