{"title":"子宫内膜癌诊断的高性能超声预测模型的开发:利用SHAP分析可解释的XGBoost算法。","authors":"Hongwei Lai, Qiumei Wu, Zongjie Weng, Guorong Lyu, Wenmin Yang, Fengying Ye","doi":"10.1002/jum.70082","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To develop and validate an ultrasonography-based machine learning (ML) model for predicting malignant endometrial and cavitary lesions.</p><p><strong>Methods: </strong>This retrospective study was conducted on patients with pathologically confirmed results following transvaginal or transrectal ultrasound from 2021 to 2023. Endometrial ultrasound features were characterized using the International Endometrial Tumor Analysis (IETA) terminology. The dataset was ranomly divided (7:3) into training and validation sets. LASSO (least absolute shrinkage and selection operator) regression was applied for feature selection, and an extreme gradient boosting (XGBoost) model was developed. Performance was assessed via receiver operating characteristic (ROC) analysis, calibration, decision curve analysis, sensitivity, specificity, and accuracy.</p><p><strong>Results: </strong>Among 1080 patients, 6 had a non-measurable endometrium. Of the remaining 1074 cases, 641 were premenopausal and 433 postmenopausal. Performance of the XGBoost model on the test set: The area under the curve (AUC) for the premenopausal group was 0.845 (0.781-0.909), with a relatively low sensitivity (0.588, 0.442-0.722) and a relatively high specificity (0.923, 0.863-0.959); the AUC for the postmenopausal group was 0.968 (0.944-0.992), with both sensitivity (0.895, 0.778-0.956) and specificity (0.931, 0.839-0.974) being relatively high. SHapley Additive exPlanations (SHAP) analysis identified key predictors: endometrial-myometrial junction, endometrial thickness, endometrial echogenicity, color Doppler flow score, and vascular pattern in premenopausal women; endometrial thickness, endometrial-myometrial junction, endometrial echogenicity, and color Doppler flow score in postmenopausal women.</p><p><strong>Conclusion: </strong>The XGBoost-based model exhibited excellent predictive performance, particularly in postmenopausal patients. SHAP analysis further enhances interpretability by identifying key ultrasonographic predictors of malignancy.</p>","PeriodicalId":17563,"journal":{"name":"Journal of Ultrasound in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a High-Performance Ultrasound Prediction Model for the Diagnosis of Endometrial Cancer: An Interpretable XGBoost Algorithm Utilizing SHAP Analysis.\",\"authors\":\"Hongwei Lai, Qiumei Wu, Zongjie Weng, Guorong Lyu, Wenmin Yang, Fengying Ye\",\"doi\":\"10.1002/jum.70082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To develop and validate an ultrasonography-based machine learning (ML) model for predicting malignant endometrial and cavitary lesions.</p><p><strong>Methods: </strong>This retrospective study was conducted on patients with pathologically confirmed results following transvaginal or transrectal ultrasound from 2021 to 2023. Endometrial ultrasound features were characterized using the International Endometrial Tumor Analysis (IETA) terminology. The dataset was ranomly divided (7:3) into training and validation sets. LASSO (least absolute shrinkage and selection operator) regression was applied for feature selection, and an extreme gradient boosting (XGBoost) model was developed. Performance was assessed via receiver operating characteristic (ROC) analysis, calibration, decision curve analysis, sensitivity, specificity, and accuracy.</p><p><strong>Results: </strong>Among 1080 patients, 6 had a non-measurable endometrium. Of the remaining 1074 cases, 641 were premenopausal and 433 postmenopausal. Performance of the XGBoost model on the test set: The area under the curve (AUC) for the premenopausal group was 0.845 (0.781-0.909), with a relatively low sensitivity (0.588, 0.442-0.722) and a relatively high specificity (0.923, 0.863-0.959); the AUC for the postmenopausal group was 0.968 (0.944-0.992), with both sensitivity (0.895, 0.778-0.956) and specificity (0.931, 0.839-0.974) being relatively high. SHapley Additive exPlanations (SHAP) analysis identified key predictors: endometrial-myometrial junction, endometrial thickness, endometrial echogenicity, color Doppler flow score, and vascular pattern in premenopausal women; endometrial thickness, endometrial-myometrial junction, endometrial echogenicity, and color Doppler flow score in postmenopausal women.</p><p><strong>Conclusion: </strong>The XGBoost-based model exhibited excellent predictive performance, particularly in postmenopausal patients. SHAP analysis further enhances interpretability by identifying key ultrasonographic predictors of malignancy.</p>\",\"PeriodicalId\":17563,\"journal\":{\"name\":\"Journal of Ultrasound in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ultrasound in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jum.70082\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ultrasound in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jum.70082","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Development of a High-Performance Ultrasound Prediction Model for the Diagnosis of Endometrial Cancer: An Interpretable XGBoost Algorithm Utilizing SHAP Analysis.
Objectives: To develop and validate an ultrasonography-based machine learning (ML) model for predicting malignant endometrial and cavitary lesions.
Methods: This retrospective study was conducted on patients with pathologically confirmed results following transvaginal or transrectal ultrasound from 2021 to 2023. Endometrial ultrasound features were characterized using the International Endometrial Tumor Analysis (IETA) terminology. The dataset was ranomly divided (7:3) into training and validation sets. LASSO (least absolute shrinkage and selection operator) regression was applied for feature selection, and an extreme gradient boosting (XGBoost) model was developed. Performance was assessed via receiver operating characteristic (ROC) analysis, calibration, decision curve analysis, sensitivity, specificity, and accuracy.
Results: Among 1080 patients, 6 had a non-measurable endometrium. Of the remaining 1074 cases, 641 were premenopausal and 433 postmenopausal. Performance of the XGBoost model on the test set: The area under the curve (AUC) for the premenopausal group was 0.845 (0.781-0.909), with a relatively low sensitivity (0.588, 0.442-0.722) and a relatively high specificity (0.923, 0.863-0.959); the AUC for the postmenopausal group was 0.968 (0.944-0.992), with both sensitivity (0.895, 0.778-0.956) and specificity (0.931, 0.839-0.974) being relatively high. SHapley Additive exPlanations (SHAP) analysis identified key predictors: endometrial-myometrial junction, endometrial thickness, endometrial echogenicity, color Doppler flow score, and vascular pattern in premenopausal women; endometrial thickness, endometrial-myometrial junction, endometrial echogenicity, and color Doppler flow score in postmenopausal women.
Conclusion: The XGBoost-based model exhibited excellent predictive performance, particularly in postmenopausal patients. SHAP analysis further enhances interpretability by identifying key ultrasonographic predictors of malignancy.
期刊介绍:
The Journal of Ultrasound in Medicine (JUM) is dedicated to the rapid, accurate publication of original articles dealing with all aspects of medical ultrasound, particularly its direct application to patient care but also relevant basic science, advances in instrumentation, and biological effects. The journal is an official publication of the American Institute of Ultrasound in Medicine and publishes articles in a variety of categories, including Original Research papers, Review Articles, Pictorial Essays, Technical Innovations, Case Series, Letters to the Editor, and more, from an international bevy of countries in a continual effort to showcase and promote advances in the ultrasound community.
Represented through these efforts are a wide variety of disciplines of ultrasound, including, but not limited to:
-Basic Science-
Breast Ultrasound-
Contrast-Enhanced Ultrasound-
Dermatology-
Echocardiography-
Elastography-
Emergency Medicine-
Fetal Echocardiography-
Gastrointestinal Ultrasound-
General and Abdominal Ultrasound-
Genitourinary Ultrasound-
Gynecologic Ultrasound-
Head and Neck Ultrasound-
High Frequency Clinical and Preclinical Imaging-
Interventional-Intraoperative Ultrasound-
Musculoskeletal Ultrasound-
Neurosonology-
Obstetric Ultrasound-
Ophthalmologic Ultrasound-
Pediatric Ultrasound-
Point-of-Care Ultrasound-
Public Policy-
Superficial Structures-
Therapeutic Ultrasound-
Ultrasound Education-
Ultrasound in Global Health-
Urologic Ultrasound-
Vascular Ultrasound