DNA纳米结构的尺寸控制增强细胞摄取并引导组织再生反应。

IF 12.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xinyue Tang, Tingting Zhai, Tiancheng Li, Yu Jin, Dantong Lei, Cheng Zhu, Luyao Qu, Yingfu Li, Yudong Wang, Hongzhou Gu, Bing Fang
{"title":"DNA纳米结构的尺寸控制增强细胞摄取并引导组织再生反应。","authors":"Xinyue Tang, Tingting Zhai, Tiancheng Li, Yu Jin, Dantong Lei, Cheng Zhu, Luyao Qu, Yingfu Li, Yudong Wang, Hongzhou Gu, Bing Fang","doi":"10.1186/s12951-025-03707-1","DOIUrl":null,"url":null,"abstract":"<p><p>Precise regulation of cellular functions is fundamental for advancing tissue regeneration and drug delivery systems. Structural DNA nanotechnology enables the design of well-defined nanostructures, emerging as a promising platform in these biomedical applications. However, a clear understanding of how the dimensional properties of DNA nanostructures affect cellular uptake and biological responses remains limited. In this study, we constructed three distinct DNA nanostructures: a one-dimensional six-helix bundle (6HB), a two-dimensional three-point star, and a three-dimensional tetrahedron. We systematically evaluated their endocytic efficiency in five representative cell types: endothelial cells, dermal fibroblasts, myoblasts, chondrocytes, and osteoblasts. Among them, the 6HB exhibited the highest cellular uptake, with minimal variability across cell types in both 2D petri dish cultures and 3D multicellular spheroid invasion models. Moreover, DNA nanostructures were found to enhance cell proliferation in fibroblasts and chondrocytes, support chondrocyte phenotype maintenance, and, in the case of the 6HB, promote myoblast differentiation. These findings provide new insights into structure-function relationships in DNA nanomaterials and offer guidance for optimizing DNA-based platforms for drug delivery and regenerative medicine.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"615"},"PeriodicalIF":12.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12482324/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dimensional control of DNA nanostructures enhances cellular uptake and guides tissue-regenerative responses.\",\"authors\":\"Xinyue Tang, Tingting Zhai, Tiancheng Li, Yu Jin, Dantong Lei, Cheng Zhu, Luyao Qu, Yingfu Li, Yudong Wang, Hongzhou Gu, Bing Fang\",\"doi\":\"10.1186/s12951-025-03707-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Precise regulation of cellular functions is fundamental for advancing tissue regeneration and drug delivery systems. Structural DNA nanotechnology enables the design of well-defined nanostructures, emerging as a promising platform in these biomedical applications. However, a clear understanding of how the dimensional properties of DNA nanostructures affect cellular uptake and biological responses remains limited. In this study, we constructed three distinct DNA nanostructures: a one-dimensional six-helix bundle (6HB), a two-dimensional three-point star, and a three-dimensional tetrahedron. We systematically evaluated their endocytic efficiency in five representative cell types: endothelial cells, dermal fibroblasts, myoblasts, chondrocytes, and osteoblasts. Among them, the 6HB exhibited the highest cellular uptake, with minimal variability across cell types in both 2D petri dish cultures and 3D multicellular spheroid invasion models. Moreover, DNA nanostructures were found to enhance cell proliferation in fibroblasts and chondrocytes, support chondrocyte phenotype maintenance, and, in the case of the 6HB, promote myoblast differentiation. These findings provide new insights into structure-function relationships in DNA nanomaterials and offer guidance for optimizing DNA-based platforms for drug delivery and regenerative medicine.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"615\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12482324/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03707-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03707-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞功能的精确调控是推进组织再生和药物输送系统的基础。结构DNA纳米技术能够设计出定义良好的纳米结构,在这些生物医学应用中成为一个有前途的平台。然而,对DNA纳米结构的尺寸特性如何影响细胞摄取和生物反应的清晰理解仍然有限。在这项研究中,我们构建了三种不同的DNA纳米结构:一维六螺旋束(6HB),二维三点星和三维四面体。我们系统地评估了它们在五种代表性细胞类型中的内吞效率:内皮细胞、真皮成纤维细胞、成肌细胞、软骨细胞和成骨细胞。其中,6HB表现出最高的细胞摄取,在2D培养皿培养和3D多细胞球体侵袭模型中,不同细胞类型的差异最小。此外,DNA纳米结构被发现可以增强成纤维细胞和软骨细胞的细胞增殖,支持软骨细胞表型维持,并且在6HB的情况下,促进成肌细胞分化。这些发现为DNA纳米材料的结构-功能关系提供了新的见解,并为优化基于DNA的药物传递和再生医学平台提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimensional control of DNA nanostructures enhances cellular uptake and guides tissue-regenerative responses.

Precise regulation of cellular functions is fundamental for advancing tissue regeneration and drug delivery systems. Structural DNA nanotechnology enables the design of well-defined nanostructures, emerging as a promising platform in these biomedical applications. However, a clear understanding of how the dimensional properties of DNA nanostructures affect cellular uptake and biological responses remains limited. In this study, we constructed three distinct DNA nanostructures: a one-dimensional six-helix bundle (6HB), a two-dimensional three-point star, and a three-dimensional tetrahedron. We systematically evaluated their endocytic efficiency in five representative cell types: endothelial cells, dermal fibroblasts, myoblasts, chondrocytes, and osteoblasts. Among them, the 6HB exhibited the highest cellular uptake, with minimal variability across cell types in both 2D petri dish cultures and 3D multicellular spheroid invasion models. Moreover, DNA nanostructures were found to enhance cell proliferation in fibroblasts and chondrocytes, support chondrocyte phenotype maintenance, and, in the case of the 6HB, promote myoblast differentiation. These findings provide new insights into structure-function relationships in DNA nanomaterials and offer guidance for optimizing DNA-based platforms for drug delivery and regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信