基于网络药理学和分子对接研究黄芩苷通过抑制SRC激活对lps诱导的HPMEC功能障碍的影响。

IF 2.5 3区 生物学
Jingchao Chen, Hao Pan, Jinchun Wang, Jing Han, Weihui Ma
{"title":"基于网络药理学和分子对接研究黄芩苷通过抑制SRC激活对lps诱导的HPMEC功能障碍的影响。","authors":"Jingchao Chen, Hao Pan, Jinchun Wang, Jing Han, Weihui Ma","doi":"10.1186/s41065-025-00574-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Adult pneumonia is an infectious lung disease caused by bacteria, viruses, or other microorganisms and exhibits some degree of contagion. Tenuigenin, a bioactive compound derived from Polygala tenuifolia, possesses broad pharmacological effects, but its role in adult pneumonia remains incompletely understood.</p><p><strong>Methods: </strong>Bioinformatics and database analysis were employed to screen and analyze the Tenuigenin target genes relevant to adult pneumonia. Cell functions were assessed using cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU) staining, transwell, tube formation, Fluo-4 calcium assay, and transepithelial electrical resistance (TER) assays. Protein levels were measured by western blot. Network pharmacology and molecular docking were employed to screen core target genes and verify binding interactions.</p><p><strong>Results: </strong>Tenuigenin targets in adult pneumonia were enriched in the pathways related to vascular permeability and calcium signaling. Tenuigenin mitigated lipopolysaccharide (LPS)-induced impairment of human pulmonary microvascular endothelial cell (HPMEC) viability, proliferation, migration, and angiogenesis, while attenuating LPS-induced increases in apoptosis, calcium ion, and reactive oxygen species (ROS) levels. Besides, Tenuigenin also attenuated the TER decrease and permeability increase caused by LPS exposure in HPMECs. Network pharmacology and molecular docking identified steroid receptor coactivator (SRC) as a core target of Tenuigenin, demonstrating binding to specific SRC amino acid residues. Tenuigenin also reduced LPS-induced increase in phosphor-SRC (p-SRC) expression. Crucially, after inhibition of SRC kinase activity, Tenuigenin no longer exerted significant protective effects against LPS-induced HPMEC injury and dysfunction.</p><p><strong>Conclusion: </strong>Tenuigenin alleviates LPS-induced injury and dysfunction of HPMECs by targeting the SRC pathway, providing a target for managing adult pneumonia.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"162 1","pages":"196"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12481841/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating the effect of tenuigenin on LPS-induced HPMEC dysfunction by inhibiting SRC activation based on network pharmacology and molecular docking.\",\"authors\":\"Jingchao Chen, Hao Pan, Jinchun Wang, Jing Han, Weihui Ma\",\"doi\":\"10.1186/s41065-025-00574-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Adult pneumonia is an infectious lung disease caused by bacteria, viruses, or other microorganisms and exhibits some degree of contagion. Tenuigenin, a bioactive compound derived from Polygala tenuifolia, possesses broad pharmacological effects, but its role in adult pneumonia remains incompletely understood.</p><p><strong>Methods: </strong>Bioinformatics and database analysis were employed to screen and analyze the Tenuigenin target genes relevant to adult pneumonia. Cell functions were assessed using cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU) staining, transwell, tube formation, Fluo-4 calcium assay, and transepithelial electrical resistance (TER) assays. Protein levels were measured by western blot. Network pharmacology and molecular docking were employed to screen core target genes and verify binding interactions.</p><p><strong>Results: </strong>Tenuigenin targets in adult pneumonia were enriched in the pathways related to vascular permeability and calcium signaling. Tenuigenin mitigated lipopolysaccharide (LPS)-induced impairment of human pulmonary microvascular endothelial cell (HPMEC) viability, proliferation, migration, and angiogenesis, while attenuating LPS-induced increases in apoptosis, calcium ion, and reactive oxygen species (ROS) levels. Besides, Tenuigenin also attenuated the TER decrease and permeability increase caused by LPS exposure in HPMECs. Network pharmacology and molecular docking identified steroid receptor coactivator (SRC) as a core target of Tenuigenin, demonstrating binding to specific SRC amino acid residues. Tenuigenin also reduced LPS-induced increase in phosphor-SRC (p-SRC) expression. Crucially, after inhibition of SRC kinase activity, Tenuigenin no longer exerted significant protective effects against LPS-induced HPMEC injury and dysfunction.</p><p><strong>Conclusion: </strong>Tenuigenin alleviates LPS-induced injury and dysfunction of HPMECs by targeting the SRC pathway, providing a target for managing adult pneumonia.</p>\",\"PeriodicalId\":12862,\"journal\":{\"name\":\"Hereditas\",\"volume\":\"162 1\",\"pages\":\"196\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12481841/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hereditas\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s41065-025-00574-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-025-00574-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:成人肺炎是一种由细菌、病毒或其他微生物引起的传染性肺部疾病,具有一定程度的传染性。Tenuigenin是一种从tenuifolia中提取的生物活性化合物,具有广泛的药理作用,但其在成人肺炎中的作用仍不完全清楚。方法:采用生物信息学和数据库分析的方法,筛选和分析与成人肺炎相关的Tenuigenin靶基因。使用细胞计数试剂盒-8 (CCK8)、5-乙基-2'-脱氧尿苷(EdU)染色、transwell、试管形成、Fluo-4钙测定和上皮电阻(TER)测定来评估细胞功能。western blot检测蛋白水平。利用网络药理学和分子对接技术筛选核心靶基因,验证结合相互作用。结果:Tenuigenin在成人肺炎中的靶点在血管通透性和钙信号通路中富集。Tenuigenin减轻了脂多糖(LPS)诱导的人肺微血管内皮细胞(HPMEC)活力、增殖、迁移和血管生成的损伤,同时减弱了LPS诱导的细胞凋亡、钙离子和活性氧(ROS)水平的增加。此外,Tenuigenin还能减轻LPS引起的hpmes的TER减少和通透性增加。网络药理学和分子对接发现类固醇受体共激活因子(SRC)是Tenuigenin的核心靶点,并与特定的SRC氨基酸残基结合。Tenuigenin还降低了lps诱导的磷酸化src (p-SRC)表达的增加。至关重要的是,在抑制SRC激酶活性后,Tenuigenin对lps诱导的HPMEC损伤和功能障碍不再具有显著的保护作用。结论:Tenuigenin通过靶向SRC通路减轻lps诱导的hpmec损伤和功能障碍,为治疗成人肺炎提供了靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the effect of tenuigenin on LPS-induced HPMEC dysfunction by inhibiting SRC activation based on network pharmacology and molecular docking.

Background: Adult pneumonia is an infectious lung disease caused by bacteria, viruses, or other microorganisms and exhibits some degree of contagion. Tenuigenin, a bioactive compound derived from Polygala tenuifolia, possesses broad pharmacological effects, but its role in adult pneumonia remains incompletely understood.

Methods: Bioinformatics and database analysis were employed to screen and analyze the Tenuigenin target genes relevant to adult pneumonia. Cell functions were assessed using cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU) staining, transwell, tube formation, Fluo-4 calcium assay, and transepithelial electrical resistance (TER) assays. Protein levels were measured by western blot. Network pharmacology and molecular docking were employed to screen core target genes and verify binding interactions.

Results: Tenuigenin targets in adult pneumonia were enriched in the pathways related to vascular permeability and calcium signaling. Tenuigenin mitigated lipopolysaccharide (LPS)-induced impairment of human pulmonary microvascular endothelial cell (HPMEC) viability, proliferation, migration, and angiogenesis, while attenuating LPS-induced increases in apoptosis, calcium ion, and reactive oxygen species (ROS) levels. Besides, Tenuigenin also attenuated the TER decrease and permeability increase caused by LPS exposure in HPMECs. Network pharmacology and molecular docking identified steroid receptor coactivator (SRC) as a core target of Tenuigenin, demonstrating binding to specific SRC amino acid residues. Tenuigenin also reduced LPS-induced increase in phosphor-SRC (p-SRC) expression. Crucially, after inhibition of SRC kinase activity, Tenuigenin no longer exerted significant protective effects against LPS-induced HPMEC injury and dysfunction.

Conclusion: Tenuigenin alleviates LPS-induced injury and dysfunction of HPMECs by targeting the SRC pathway, providing a target for managing adult pneumonia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hereditas
Hereditas Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍: For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信