实验电催化研究数据库:推进数据共享和可重用性。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Ruchika Mahajan, Ashton M Aleman, Colin F Crago, Suman Bhasker-Ranganath, Melissa E Kreider, Jose A Zamora Zeledon, Johanna Schröder, Gaurav A Kamat, McKenzie A Hubert, Adam C Nielander, Thomas F Jaramillo, Michaela Burke Stevens, Johannes Voss, Kirsten T Winther
{"title":"实验电催化研究数据库:推进数据共享和可重用性。","authors":"Ruchika Mahajan, Ashton M Aleman, Colin F Crago, Suman Bhasker-Ranganath, Melissa E Kreider, Jose A Zamora Zeledon, Johanna Schröder, Gaurav A Kamat, McKenzie A Hubert, Adam C Nielander, Thomas F Jaramillo, Michaela Burke Stevens, Johannes Voss, Kirsten T Winther","doi":"10.1063/5.0280821","DOIUrl":null,"url":null,"abstract":"<p><p>The availability of high-fidelity catalysis data is essential for training machine learning models to advance catalyst discovery. Furthermore, the sharing of data is crucial to ensure the comparability of scientific results. In electrocatalysis, where complex experimental conditions and measurement uncertainties pose unique challenges, structured data collection and sharing are critical to improving reproducibility and enabling robust model development. Addressing these challenges requires standardized approaches to data collection, metadata inclusion, and accessibility. To support this effort, we have developed an extensive data infrastructure that curates and organizes multimodal data from electrocatalysis experiments, making them openly available through the catalysis-hub.org platform. Our datasets, comprising 241 experimental entries, provide detailed information on reaction conditions, material properties, and performance metrics, ensuring transparency and interoperability. By structuring electrocatalysis data in web-based as well as machine-readable formats, we aim to bridge the gap between experimental and computational research, allowing for improved benchmarking and predictive modeling. This work highlights the importance of well-structured, accessible data in overcoming reproducibility challenges and advancing machine learning applications in catalysis. The framework we present lays the foundation for future data-driven research in electrocatalysis and offers a scalable model for other experimental disciplines.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"163 12","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A research database for experimental electrocatalysis: Advancing data sharing and reusability.\",\"authors\":\"Ruchika Mahajan, Ashton M Aleman, Colin F Crago, Suman Bhasker-Ranganath, Melissa E Kreider, Jose A Zamora Zeledon, Johanna Schröder, Gaurav A Kamat, McKenzie A Hubert, Adam C Nielander, Thomas F Jaramillo, Michaela Burke Stevens, Johannes Voss, Kirsten T Winther\",\"doi\":\"10.1063/5.0280821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The availability of high-fidelity catalysis data is essential for training machine learning models to advance catalyst discovery. Furthermore, the sharing of data is crucial to ensure the comparability of scientific results. In electrocatalysis, where complex experimental conditions and measurement uncertainties pose unique challenges, structured data collection and sharing are critical to improving reproducibility and enabling robust model development. Addressing these challenges requires standardized approaches to data collection, metadata inclusion, and accessibility. To support this effort, we have developed an extensive data infrastructure that curates and organizes multimodal data from electrocatalysis experiments, making them openly available through the catalysis-hub.org platform. Our datasets, comprising 241 experimental entries, provide detailed information on reaction conditions, material properties, and performance metrics, ensuring transparency and interoperability. By structuring electrocatalysis data in web-based as well as machine-readable formats, we aim to bridge the gap between experimental and computational research, allowing for improved benchmarking and predictive modeling. This work highlights the importance of well-structured, accessible data in overcoming reproducibility challenges and advancing machine learning applications in catalysis. The framework we present lays the foundation for future data-driven research in electrocatalysis and offers a scalable model for other experimental disciplines.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"163 12\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0280821\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0280821","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高保真催化数据的可用性对于训练机器学习模型以推进催化剂的发现至关重要。此外,数据共享对于确保科学结果的可比性至关重要。在电催化中,复杂的实验条件和测量不确定性构成了独特的挑战,结构化数据收集和共享对于提高再现性和实现稳健的模型开发至关重要。解决这些挑战需要标准化的数据收集、元数据包含和可访问性方法。为了支持这项工作,我们开发了一个广泛的数据基础设施,用于管理和组织来自电催化实验的多模态数据,并通过catalys-hub.org平台公开提供这些数据。我们的数据集包括241个实验条目,提供了有关反应条件、材料特性和性能指标的详细信息,确保了透明度和互操作性。通过构建基于网络和机器可读格式的电催化数据,我们的目标是弥合实验和计算研究之间的差距,从而改进基准测试和预测建模。这项工作强调了结构良好、可访问的数据在克服可重复性挑战和推进机器学习在催化中的应用方面的重要性。我们提出的框架为未来电催化的数据驱动研究奠定了基础,并为其他实验学科提供了可扩展的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A research database for experimental electrocatalysis: Advancing data sharing and reusability.

The availability of high-fidelity catalysis data is essential for training machine learning models to advance catalyst discovery. Furthermore, the sharing of data is crucial to ensure the comparability of scientific results. In electrocatalysis, where complex experimental conditions and measurement uncertainties pose unique challenges, structured data collection and sharing are critical to improving reproducibility and enabling robust model development. Addressing these challenges requires standardized approaches to data collection, metadata inclusion, and accessibility. To support this effort, we have developed an extensive data infrastructure that curates and organizes multimodal data from electrocatalysis experiments, making them openly available through the catalysis-hub.org platform. Our datasets, comprising 241 experimental entries, provide detailed information on reaction conditions, material properties, and performance metrics, ensuring transparency and interoperability. By structuring electrocatalysis data in web-based as well as machine-readable formats, we aim to bridge the gap between experimental and computational research, allowing for improved benchmarking and predictive modeling. This work highlights the importance of well-structured, accessible data in overcoming reproducibility challenges and advancing machine learning applications in catalysis. The framework we present lays the foundation for future data-driven research in electrocatalysis and offers a scalable model for other experimental disciplines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信