基于transformer的AI方法揭示晚期NSCLC和PD-L1≥50%患者的长期、时间依赖性预后复杂性:来自派姆单抗5年全球注册的见解

IF 10.6 1区 医学 Q1 IMMUNOLOGY
Alessio Cortellini, Valentina Santo, Leonardo Brunetti, Edoardo Garbo, David J Pinato, Giulia La Cava, Jarushka Naidoo, Artur Katz, Monica Loza, Joel W Neal, Carlo Genova, Scott Gettinger, So Yeon Kim, Ritujith Jayakrishnan, Talal El Zarif, Marco Russano, Federica Pecci, Alessandro Di Federico, Joao V Alessi, Michele Montrone, Dwight H Owen, Sara Ramella, Diego Signorelli, Mary Jo Fidler, Mingjia Li, Andrea Camerini, Balazs Halmos, Bruno Vincenzi, Giulio Metro, Francesco Passiglia, Sai Yendamuri, Annalisa Guida, Michele Ghidini, Antonio D'Alessio, Giuseppe L Banna, Claudia A M Fulgenzi, Salvatore Grisanti, Francesco Grossi, Armida D'Incecco, Eleni Josephides, Mieke Van Hemelrijck, Alessandro Russo, Alain Gelibter, Gianpaolo Spinelli, Monica Verrico, Bartłomiej Tomasik, Raffaele Giusti, Kirsty Balachandran, Emilio Bria, Martin Sebastian, Maximilian Rost, Martin Forster, Uma Mukherjee, Lorenza Landi, Francesca Mazzoni, Avinash Aujayeb, Manuel Dupont, Alessandra Curioni-Fontecedro, Rita Chiari, Vincenzo Sforza, Marcello Tiseo, Alex Friedlaender, Alfredo Addeo, Federica Zoratto, Michele De Tursi, Luca Cantini, Elisa Roca, Giannis Mountzios, Danilo Rocco, Luigi Della Gravara, Sukumar Kalvapudi, Alessandro Inno, Paolo Bironzo, Rafael Di Marco Barros, David O'Reilly, Orla Fitzpatrick, Eleni Karapanagiotou, Isabelle Monnet, Javier Baena, Marianna Macerelli, Aida Piedra, Francesco Agustoni, Diego Luigi Cortinovis, Giuseppe Tonini, Gabriele Minuti, Chiara Bennati, Laura Mezquita, Teresa Gorría, Alberto Servetto, Teresa Beninato, Giuseppe Lo Russo, Arsela Prelaj, Andrea De Giglio, Jacobo Rogado, Laura Moliner, Ernest Nadal, Federica Biello, Frank Aboubakar Nana, Anne-Marie Dingemans, Joachim G J V Aerts, Roberto Ferrara, Taher Abu Hejleh, Kazuki Takada, Abdul Rafeh Naqash, Marina Chiara Garassino, Solange Peters, Heather A Wakelee, Amin H Nassar, Biagio Ricciuti, Paolo Soda, Camillo Maria Caruso, Valerio Guarrasi
{"title":"基于transformer的AI方法揭示晚期NSCLC和PD-L1≥50%患者的长期、时间依赖性预后复杂性:来自派姆单抗5年全球注册的见解","authors":"Alessio Cortellini, Valentina Santo, Leonardo Brunetti, Edoardo Garbo, David J Pinato, Giulia La Cava, Jarushka Naidoo, Artur Katz, Monica Loza, Joel W Neal, Carlo Genova, Scott Gettinger, So Yeon Kim, Ritujith Jayakrishnan, Talal El Zarif, Marco Russano, Federica Pecci, Alessandro Di Federico, Joao V Alessi, Michele Montrone, Dwight H Owen, Sara Ramella, Diego Signorelli, Mary Jo Fidler, Mingjia Li, Andrea Camerini, Balazs Halmos, Bruno Vincenzi, Giulio Metro, Francesco Passiglia, Sai Yendamuri, Annalisa Guida, Michele Ghidini, Antonio D'Alessio, Giuseppe L Banna, Claudia A M Fulgenzi, Salvatore Grisanti, Francesco Grossi, Armida D'Incecco, Eleni Josephides, Mieke Van Hemelrijck, Alessandro Russo, Alain Gelibter, Gianpaolo Spinelli, Monica Verrico, Bartłomiej Tomasik, Raffaele Giusti, Kirsty Balachandran, Emilio Bria, Martin Sebastian, Maximilian Rost, Martin Forster, Uma Mukherjee, Lorenza Landi, Francesca Mazzoni, Avinash Aujayeb, Manuel Dupont, Alessandra Curioni-Fontecedro, Rita Chiari, Vincenzo Sforza, Marcello Tiseo, Alex Friedlaender, Alfredo Addeo, Federica Zoratto, Michele De Tursi, Luca Cantini, Elisa Roca, Giannis Mountzios, Danilo Rocco, Luigi Della Gravara, Sukumar Kalvapudi, Alessandro Inno, Paolo Bironzo, Rafael Di Marco Barros, David O'Reilly, Orla Fitzpatrick, Eleni Karapanagiotou, Isabelle Monnet, Javier Baena, Marianna Macerelli, Aida Piedra, Francesco Agustoni, Diego Luigi Cortinovis, Giuseppe Tonini, Gabriele Minuti, Chiara Bennati, Laura Mezquita, Teresa Gorría, Alberto Servetto, Teresa Beninato, Giuseppe Lo Russo, Arsela Prelaj, Andrea De Giglio, Jacobo Rogado, Laura Moliner, Ernest Nadal, Federica Biello, Frank Aboubakar Nana, Anne-Marie Dingemans, Joachim G J V Aerts, Roberto Ferrara, Taher Abu Hejleh, Kazuki Takada, Abdul Rafeh Naqash, Marina Chiara Garassino, Solange Peters, Heather A Wakelee, Amin H Nassar, Biagio Ricciuti, Paolo Soda, Camillo Maria Caruso, Valerio Guarrasi","doi":"10.1136/jitc-2025-012423","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>With nearly one-third of patients with advanced non-small cell lung cancer (NSCLC) and PD-L1 Tumor Proportion Score≥50% surviving beyond 5 years following first-line pembrolizumab, long-term outcomes challenge traditional paradigms of cancer prognostication. The emergence of non-cancer-related factors and time-dependent trends underscores the need for advanced analytical frameworks to unravel their complex interplay.</p><p><strong>Methods: </strong>We analyzed the Pembro-real 5Y registry, a global real-world dataset of 1050 patients treated across 61 institutions in 14 countries with a long-term follow-up and a large panel of baseline variables. Two complementary approaches were employed: ridge regression, chosen for its ability to address multicollinearity while retaining interpretability, and not another imputation method (NAIM), a transformer-based artificial intelligence model designed to handle missing data without imputation. Endpoints included risk of death at 6, 12, 24, 60 months and 5-year survival.</p><p><strong>Results: </strong>The ridge regression model achieved a c-statistic of 0.66 (95% CI: 0.59 to 0.72) for the risk of death and an area under the curve (AUC) of 0.72 (95% CI: 0.65 to 0.78) for 5-year survival, identifying Eastern Cooperative Oncology Group Performance Status (ECOG-PS)≥2, increasing age, and metastatic burden as primary risk factors. However, wide CIs for some predictors highlighted statistical instability. NAIM demonstrated robust handling of missing data, with a c-index of 62.98±2.11 for risk of death and an AUC of 60.52±3.71 for 5-year survival. The comprehensive SHapley Additive exPlanations analysis revealed dynamic, time-dependent patterns, with early mortality dominated by acute factors (eg, ECOG-PS, steroids) and long-term outcomes increasingly influenced by systemic health markers (eg, absence of hypertension, increasing body mass index). Unexpected insights included the protective role of dyslipidemia (but not statins) and the nuanced impact of smoking status, reflecting evolving disease dynamics and host-tumor interplay.</p><p><strong>Conclusions: </strong>Our integrative framework illuminates the complexity of long-term outcomes in patients with NSCLC treated with pembrolizumab, uncovering dynamic, non-linear prognostication trends. This analysis provides insights into patient trajectories, emphasizing the need for holistic, long-term management strategies.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 9","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12481261/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transformer-based AI approach to unravel long-term, time-dependent prognostic complexity in patients with advanced NSCLC and PD-L1 ≥50%: insights from the pembrolizumab 5-year global registry.\",\"authors\":\"Alessio Cortellini, Valentina Santo, Leonardo Brunetti, Edoardo Garbo, David J Pinato, Giulia La Cava, Jarushka Naidoo, Artur Katz, Monica Loza, Joel W Neal, Carlo Genova, Scott Gettinger, So Yeon Kim, Ritujith Jayakrishnan, Talal El Zarif, Marco Russano, Federica Pecci, Alessandro Di Federico, Joao V Alessi, Michele Montrone, Dwight H Owen, Sara Ramella, Diego Signorelli, Mary Jo Fidler, Mingjia Li, Andrea Camerini, Balazs Halmos, Bruno Vincenzi, Giulio Metro, Francesco Passiglia, Sai Yendamuri, Annalisa Guida, Michele Ghidini, Antonio D'Alessio, Giuseppe L Banna, Claudia A M Fulgenzi, Salvatore Grisanti, Francesco Grossi, Armida D'Incecco, Eleni Josephides, Mieke Van Hemelrijck, Alessandro Russo, Alain Gelibter, Gianpaolo Spinelli, Monica Verrico, Bartłomiej Tomasik, Raffaele Giusti, Kirsty Balachandran, Emilio Bria, Martin Sebastian, Maximilian Rost, Martin Forster, Uma Mukherjee, Lorenza Landi, Francesca Mazzoni, Avinash Aujayeb, Manuel Dupont, Alessandra Curioni-Fontecedro, Rita Chiari, Vincenzo Sforza, Marcello Tiseo, Alex Friedlaender, Alfredo Addeo, Federica Zoratto, Michele De Tursi, Luca Cantini, Elisa Roca, Giannis Mountzios, Danilo Rocco, Luigi Della Gravara, Sukumar Kalvapudi, Alessandro Inno, Paolo Bironzo, Rafael Di Marco Barros, David O'Reilly, Orla Fitzpatrick, Eleni Karapanagiotou, Isabelle Monnet, Javier Baena, Marianna Macerelli, Aida Piedra, Francesco Agustoni, Diego Luigi Cortinovis, Giuseppe Tonini, Gabriele Minuti, Chiara Bennati, Laura Mezquita, Teresa Gorría, Alberto Servetto, Teresa Beninato, Giuseppe Lo Russo, Arsela Prelaj, Andrea De Giglio, Jacobo Rogado, Laura Moliner, Ernest Nadal, Federica Biello, Frank Aboubakar Nana, Anne-Marie Dingemans, Joachim G J V Aerts, Roberto Ferrara, Taher Abu Hejleh, Kazuki Takada, Abdul Rafeh Naqash, Marina Chiara Garassino, Solange Peters, Heather A Wakelee, Amin H Nassar, Biagio Ricciuti, Paolo Soda, Camillo Maria Caruso, Valerio Guarrasi\",\"doi\":\"10.1136/jitc-2025-012423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>With nearly one-third of patients with advanced non-small cell lung cancer (NSCLC) and PD-L1 Tumor Proportion Score≥50% surviving beyond 5 years following first-line pembrolizumab, long-term outcomes challenge traditional paradigms of cancer prognostication. The emergence of non-cancer-related factors and time-dependent trends underscores the need for advanced analytical frameworks to unravel their complex interplay.</p><p><strong>Methods: </strong>We analyzed the Pembro-real 5Y registry, a global real-world dataset of 1050 patients treated across 61 institutions in 14 countries with a long-term follow-up and a large panel of baseline variables. Two complementary approaches were employed: ridge regression, chosen for its ability to address multicollinearity while retaining interpretability, and not another imputation method (NAIM), a transformer-based artificial intelligence model designed to handle missing data without imputation. Endpoints included risk of death at 6, 12, 24, 60 months and 5-year survival.</p><p><strong>Results: </strong>The ridge regression model achieved a c-statistic of 0.66 (95% CI: 0.59 to 0.72) for the risk of death and an area under the curve (AUC) of 0.72 (95% CI: 0.65 to 0.78) for 5-year survival, identifying Eastern Cooperative Oncology Group Performance Status (ECOG-PS)≥2, increasing age, and metastatic burden as primary risk factors. However, wide CIs for some predictors highlighted statistical instability. NAIM demonstrated robust handling of missing data, with a c-index of 62.98±2.11 for risk of death and an AUC of 60.52±3.71 for 5-year survival. The comprehensive SHapley Additive exPlanations analysis revealed dynamic, time-dependent patterns, with early mortality dominated by acute factors (eg, ECOG-PS, steroids) and long-term outcomes increasingly influenced by systemic health markers (eg, absence of hypertension, increasing body mass index). Unexpected insights included the protective role of dyslipidemia (but not statins) and the nuanced impact of smoking status, reflecting evolving disease dynamics and host-tumor interplay.</p><p><strong>Conclusions: </strong>Our integrative framework illuminates the complexity of long-term outcomes in patients with NSCLC treated with pembrolizumab, uncovering dynamic, non-linear prognostication trends. This analysis provides insights into patient trajectories, emphasizing the need for holistic, long-term management strategies.</p>\",\"PeriodicalId\":14820,\"journal\":{\"name\":\"Journal for Immunotherapy of Cancer\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12481261/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal for Immunotherapy of Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jitc-2025-012423\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Immunotherapy of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jitc-2025-012423","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:近三分之一的晚期非小细胞肺癌(NSCLC)和PD-L1肿瘤比例评分≥50%的患者在一线派姆单抗治疗后存活超过5年,长期结果挑战了传统的癌症预后模式。非癌症相关因素和时间依赖性趋势的出现强调需要先进的分析框架来揭示它们复杂的相互作用。方法:我们分析了pembrom -real 5Y注册表,这是一个来自14个国家61家机构的1050名患者的全球真实世界数据集,并进行了长期随访和大量基线变量。采用了两种互补的方法:脊回归,选择它是因为它能够在保持可解释性的同时解决多重共线性问题,而不是另一种输入方法(NAIM),一种基于变压器的人工智能模型,旨在处理缺失的数据而不输入。终点包括6个月、12个月、24个月、60个月和5年生存期的死亡风险。结果:脊回归模型的死亡风险的c统计量为0.66 (95% CI: 0.59至0.72),5年生存率的曲线下面积(AUC)为0.72 (95% CI: 0.65至0.78),确定东部肿瘤合作组性能状态(ECOG-PS)≥2,年龄增加和转移负担是主要危险因素。然而,一些预测因子的宽ci突出了统计不稳定性。NAIM显示了对缺失数据的稳健处理,死亡风险的c指数为62.98±2.11,5年生存的AUC为60.52±3.71。综合SHapley加性解释分析揭示了动态的、时间依赖的模式,早期死亡率主要受急性因素(如ECOG-PS、类固醇)的影响,而长期结局越来越受全身健康指标(如无高血压、体重指数增加)的影响。意想不到的见解包括血脂异常的保护作用(但不包括他汀类药物)和吸烟状态的微妙影响,反映了不断发展的疾病动态和宿主-肿瘤相互作用。结论:我们的综合框架阐明了使用派姆单抗治疗的NSCLC患者长期预后的复杂性,揭示了动态的、非线性的预后趋势。这一分析提供了洞察病人的轨迹,强调需要整体的,长期的管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformer-based AI approach to unravel long-term, time-dependent prognostic complexity in patients with advanced NSCLC and PD-L1 ≥50%: insights from the pembrolizumab 5-year global registry.

Background: With nearly one-third of patients with advanced non-small cell lung cancer (NSCLC) and PD-L1 Tumor Proportion Score≥50% surviving beyond 5 years following first-line pembrolizumab, long-term outcomes challenge traditional paradigms of cancer prognostication. The emergence of non-cancer-related factors and time-dependent trends underscores the need for advanced analytical frameworks to unravel their complex interplay.

Methods: We analyzed the Pembro-real 5Y registry, a global real-world dataset of 1050 patients treated across 61 institutions in 14 countries with a long-term follow-up and a large panel of baseline variables. Two complementary approaches were employed: ridge regression, chosen for its ability to address multicollinearity while retaining interpretability, and not another imputation method (NAIM), a transformer-based artificial intelligence model designed to handle missing data without imputation. Endpoints included risk of death at 6, 12, 24, 60 months and 5-year survival.

Results: The ridge regression model achieved a c-statistic of 0.66 (95% CI: 0.59 to 0.72) for the risk of death and an area under the curve (AUC) of 0.72 (95% CI: 0.65 to 0.78) for 5-year survival, identifying Eastern Cooperative Oncology Group Performance Status (ECOG-PS)≥2, increasing age, and metastatic burden as primary risk factors. However, wide CIs for some predictors highlighted statistical instability. NAIM demonstrated robust handling of missing data, with a c-index of 62.98±2.11 for risk of death and an AUC of 60.52±3.71 for 5-year survival. The comprehensive SHapley Additive exPlanations analysis revealed dynamic, time-dependent patterns, with early mortality dominated by acute factors (eg, ECOG-PS, steroids) and long-term outcomes increasingly influenced by systemic health markers (eg, absence of hypertension, increasing body mass index). Unexpected insights included the protective role of dyslipidemia (but not statins) and the nuanced impact of smoking status, reflecting evolving disease dynamics and host-tumor interplay.

Conclusions: Our integrative framework illuminates the complexity of long-term outcomes in patients with NSCLC treated with pembrolizumab, uncovering dynamic, non-linear prognostication trends. This analysis provides insights into patient trajectories, emphasizing the need for holistic, long-term management strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal for Immunotherapy of Cancer
Journal for Immunotherapy of Cancer Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
17.70
自引率
4.60%
发文量
522
审稿时长
18 weeks
期刊介绍: The Journal for ImmunoTherapy of Cancer (JITC) is a peer-reviewed publication that promotes scientific exchange and deepens knowledge in the constantly evolving fields of tumor immunology and cancer immunotherapy. With an open access format, JITC encourages widespread access to its findings. The journal covers a wide range of topics, spanning from basic science to translational and clinical research. Key areas of interest include tumor-host interactions, the intricate tumor microenvironment, animal models, the identification of predictive and prognostic immune biomarkers, groundbreaking pharmaceutical and cellular therapies, innovative vaccines, combination immune-based treatments, and the study of immune-related toxicity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信