Raluca Ghebosu, Jenifer Pendiuk Goncalves, Nur Indah Fitri, Dalila Iannotta, Mohammad Farouq Sharifpour, Elaina Coleborn, Alex Loukas, Fernando Souza-Fonseca-Guimaraes, Joy Wolfram
{"title":"脂蛋白关联荧光法(LAF)作为评估细胞外囊泡-脂蛋白结合的半定量表征工具。","authors":"Raluca Ghebosu, Jenifer Pendiuk Goncalves, Nur Indah Fitri, Dalila Iannotta, Mohammad Farouq Sharifpour, Elaina Coleborn, Alex Loukas, Fernando Souza-Fonseca-Guimaraes, Joy Wolfram","doi":"10.1002/jev2.70172","DOIUrl":null,"url":null,"abstract":"<p>Extracellular vesicles (EVs) are biological nanoparticles that play important roles in (patho)physiological processes and are promising new therapeutic and diagnostic tools. Recent evidence suggests that other circulating biological nanoparticles, primarily lipoproteins, bind to EVs, changing their biological identity. Such binding has been demonstrated with complex qualitative techniques, such as cryogenic transmission electron microscopy. There is a need to rapidly and simply quantify EV-lipoprotein binding, as such complexes could have major implications for EV biology and medical applications. This study developed lipoprotein association fluorometry (LAF; based on fluorescent lipophilic indocarbocyanine dyes), as a first-of-its-kind, simple and quick assay to assess EV binding to lipoproteins. The LAF assay was validated with synthetic nanoparticles, small molecules, polymers and proteins that display known interactions with lipoproteins. The LAF assay demonstrates that EVs from various human and non-human (nematode and bacteria) sources bind to very-low-density lipoprotein (VLDL) and low-density lipoprotein (LDL). Notably, EVs derived from cancerous cells displayed substantially increased binding to VLDL, LDL and plasma compared to EVs from normal cells. Additionally, the LAF assay revealed that EVs from metastatic cancer cells bound to VLDL to a greater extent than those from corresponding patient-matched non-metastatic cancer cells. On the contrary, EVs displayed minimal binding to high-density lipoprotein (HDL). Taken together, the LAF assay is capable of measuring EV-lipoprotein binding in a simple, rapid and semi-quantitative manner, leading to new opportunities to probe EV biology and develop novel therapeutics, and diagnostics.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 10","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://isevjournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70172","citationCount":"0","resultStr":"{\"title\":\"Lipoprotein Association Fluorometry (LAF) as a Semi-Quantitative Characterization Tool to Assess Extracellular Vesicle-Lipoprotein Binding\",\"authors\":\"Raluca Ghebosu, Jenifer Pendiuk Goncalves, Nur Indah Fitri, Dalila Iannotta, Mohammad Farouq Sharifpour, Elaina Coleborn, Alex Loukas, Fernando Souza-Fonseca-Guimaraes, Joy Wolfram\",\"doi\":\"10.1002/jev2.70172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extracellular vesicles (EVs) are biological nanoparticles that play important roles in (patho)physiological processes and are promising new therapeutic and diagnostic tools. Recent evidence suggests that other circulating biological nanoparticles, primarily lipoproteins, bind to EVs, changing their biological identity. Such binding has been demonstrated with complex qualitative techniques, such as cryogenic transmission electron microscopy. There is a need to rapidly and simply quantify EV-lipoprotein binding, as such complexes could have major implications for EV biology and medical applications. This study developed lipoprotein association fluorometry (LAF; based on fluorescent lipophilic indocarbocyanine dyes), as a first-of-its-kind, simple and quick assay to assess EV binding to lipoproteins. The LAF assay was validated with synthetic nanoparticles, small molecules, polymers and proteins that display known interactions with lipoproteins. The LAF assay demonstrates that EVs from various human and non-human (nematode and bacteria) sources bind to very-low-density lipoprotein (VLDL) and low-density lipoprotein (LDL). Notably, EVs derived from cancerous cells displayed substantially increased binding to VLDL, LDL and plasma compared to EVs from normal cells. Additionally, the LAF assay revealed that EVs from metastatic cancer cells bound to VLDL to a greater extent than those from corresponding patient-matched non-metastatic cancer cells. On the contrary, EVs displayed minimal binding to high-density lipoprotein (HDL). Taken together, the LAF assay is capable of measuring EV-lipoprotein binding in a simple, rapid and semi-quantitative manner, leading to new opportunities to probe EV biology and develop novel therapeutics, and diagnostics.</p>\",\"PeriodicalId\":15811,\"journal\":{\"name\":\"Journal of Extracellular Vesicles\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://isevjournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70172\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Extracellular Vesicles\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jev2.70172\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jev2.70172","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Lipoprotein Association Fluorometry (LAF) as a Semi-Quantitative Characterization Tool to Assess Extracellular Vesicle-Lipoprotein Binding
Extracellular vesicles (EVs) are biological nanoparticles that play important roles in (patho)physiological processes and are promising new therapeutic and diagnostic tools. Recent evidence suggests that other circulating biological nanoparticles, primarily lipoproteins, bind to EVs, changing their biological identity. Such binding has been demonstrated with complex qualitative techniques, such as cryogenic transmission electron microscopy. There is a need to rapidly and simply quantify EV-lipoprotein binding, as such complexes could have major implications for EV biology and medical applications. This study developed lipoprotein association fluorometry (LAF; based on fluorescent lipophilic indocarbocyanine dyes), as a first-of-its-kind, simple and quick assay to assess EV binding to lipoproteins. The LAF assay was validated with synthetic nanoparticles, small molecules, polymers and proteins that display known interactions with lipoproteins. The LAF assay demonstrates that EVs from various human and non-human (nematode and bacteria) sources bind to very-low-density lipoprotein (VLDL) and low-density lipoprotein (LDL). Notably, EVs derived from cancerous cells displayed substantially increased binding to VLDL, LDL and plasma compared to EVs from normal cells. Additionally, the LAF assay revealed that EVs from metastatic cancer cells bound to VLDL to a greater extent than those from corresponding patient-matched non-metastatic cancer cells. On the contrary, EVs displayed minimal binding to high-density lipoprotein (HDL). Taken together, the LAF assay is capable of measuring EV-lipoprotein binding in a simple, rapid and semi-quantitative manner, leading to new opportunities to probe EV biology and develop novel therapeutics, and diagnostics.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.