Alexander Gardner, Molly Sneller, William H Tepp, Joseph T Barbieri, Sabine Pellett
{"title":"肉毒杆菌神经毒素轻链/A1利用快速突触囊泡循环裂解结合SNAP-25的质膜。","authors":"Alexander Gardner, Molly Sneller, William H Tepp, Joseph T Barbieri, Sabine Pellett","doi":"10.1038/s42003-025-08633-4","DOIUrl":null,"url":null,"abstract":"<p><p>Botulinum neurotoxins (BoNT) are the most potent protein toxins for humans, yet how BoNT-Light Chain/A1 (LC/A1) journeys to cleave intracellular SNAP-25 is understudied. Here we use a cell-based assay to measure cytosolic EGFP-LC/A1 intracellular trafficking and SNAP-25 cleavage in Neuro-2A cells. Intracellular LC/A1 associated on microtubules and co-localized with Rab GTPases involved in fast synaptic vesicles and endosome recycling. Multiple Dominant Negative (DN) Rabs GTPases involved in fast synaptic vesicles or endosome recycling inhibited LC/A1 trafficking to the intracellular plasma membrane and SNAP-25 cleavage. A cytosolic LC/A1 variant that bound the plasma membrane from the cytosol was insensitive to DNRab GTPases involved in fast synaptic vesicle recycling. LC/A1 traffics on fast synaptic vesicles to the intracellular plasma membrane to cleave SNAP-25. Our data suggest, like Heavy Chain host cell entry and LC catalysis, LC intracellular trafficking to target host substrates can contribute to bacterial toxin potency.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"1383"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12480579/pdf/","citationCount":"0","resultStr":"{\"title\":\"Botulinum neurotoxin Light Chain/A1 uses fast synaptic vesicle cycling to cleave plasma membrane bound SNAP-25.\",\"authors\":\"Alexander Gardner, Molly Sneller, William H Tepp, Joseph T Barbieri, Sabine Pellett\",\"doi\":\"10.1038/s42003-025-08633-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Botulinum neurotoxins (BoNT) are the most potent protein toxins for humans, yet how BoNT-Light Chain/A1 (LC/A1) journeys to cleave intracellular SNAP-25 is understudied. Here we use a cell-based assay to measure cytosolic EGFP-LC/A1 intracellular trafficking and SNAP-25 cleavage in Neuro-2A cells. Intracellular LC/A1 associated on microtubules and co-localized with Rab GTPases involved in fast synaptic vesicles and endosome recycling. Multiple Dominant Negative (DN) Rabs GTPases involved in fast synaptic vesicles or endosome recycling inhibited LC/A1 trafficking to the intracellular plasma membrane and SNAP-25 cleavage. A cytosolic LC/A1 variant that bound the plasma membrane from the cytosol was insensitive to DNRab GTPases involved in fast synaptic vesicle recycling. LC/A1 traffics on fast synaptic vesicles to the intracellular plasma membrane to cleave SNAP-25. Our data suggest, like Heavy Chain host cell entry and LC catalysis, LC intracellular trafficking to target host substrates can contribute to bacterial toxin potency.</p>\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\"8 1\",\"pages\":\"1383\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12480579/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s42003-025-08633-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08633-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Botulinum neurotoxin Light Chain/A1 uses fast synaptic vesicle cycling to cleave plasma membrane bound SNAP-25.
Botulinum neurotoxins (BoNT) are the most potent protein toxins for humans, yet how BoNT-Light Chain/A1 (LC/A1) journeys to cleave intracellular SNAP-25 is understudied. Here we use a cell-based assay to measure cytosolic EGFP-LC/A1 intracellular trafficking and SNAP-25 cleavage in Neuro-2A cells. Intracellular LC/A1 associated on microtubules and co-localized with Rab GTPases involved in fast synaptic vesicles and endosome recycling. Multiple Dominant Negative (DN) Rabs GTPases involved in fast synaptic vesicles or endosome recycling inhibited LC/A1 trafficking to the intracellular plasma membrane and SNAP-25 cleavage. A cytosolic LC/A1 variant that bound the plasma membrane from the cytosol was insensitive to DNRab GTPases involved in fast synaptic vesicle recycling. LC/A1 traffics on fast synaptic vesicles to the intracellular plasma membrane to cleave SNAP-25. Our data suggest, like Heavy Chain host cell entry and LC catalysis, LC intracellular trafficking to target host substrates can contribute to bacterial toxin potency.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.