利用快速非线性NMA和基于fft的AFMFit搜索来解密AFM数据中的构象动力学。

IF 5.1 1区 生物学 Q1 BIOLOGY
Rémi Vuillemot, Jean-Luc Pellequer, Sergei Grudinin
{"title":"利用快速非线性NMA和基于fft的AFMFit搜索来解密AFM数据中的构象动力学。","authors":"Rémi Vuillemot, Jean-Luc Pellequer, Sergei Grudinin","doi":"10.1038/s42003-025-08365-5","DOIUrl":null,"url":null,"abstract":"<p><p>Atomic Force Microscopy (AFM) offers a unique opportunity to study the conformational dynamics of proteins in near-physiological conditions at the single-molecule level. However, interpreting the two-dimensional molecular surfaces of multiple molecules measured in AFM experiments as three-dimensional conformational dynamics of a single molecule poses a significant challenge. Here, we present AFMfit, a flexible fitting procedure that deforms an input atomic model to match multiple AFM observations. The fitted models form a conformational ensemble that unambiguously describes the AFM experiment. Our method uses a new fast fitting algorithm based on the nonlinear Normal Mode Analysis (NMA) method NOLB to associate each molecule with its conformational state. AFMfit processes conformations of hundreds of AFM images of a single molecule in a few minutes on a single workstation, enabling analysis of larger datasets, including high-speed (HS)-AFM. We demonstrate the applications of our methods to synthetic and experimental AFM/HS-AFM data that include activated factor V and a membrane-embedded transient receptor potential channel TRPV3. AFMfit is an open-source Python package available at https://gricad-gitlab.univ-grenoble-alpes.fr/GruLab/AFMfit/ .</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"1381"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479952/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deciphering conformational dynamics in AFM data using fast nonlinear NMA and FFT-based search with AFMFit.\",\"authors\":\"Rémi Vuillemot, Jean-Luc Pellequer, Sergei Grudinin\",\"doi\":\"10.1038/s42003-025-08365-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atomic Force Microscopy (AFM) offers a unique opportunity to study the conformational dynamics of proteins in near-physiological conditions at the single-molecule level. However, interpreting the two-dimensional molecular surfaces of multiple molecules measured in AFM experiments as three-dimensional conformational dynamics of a single molecule poses a significant challenge. Here, we present AFMfit, a flexible fitting procedure that deforms an input atomic model to match multiple AFM observations. The fitted models form a conformational ensemble that unambiguously describes the AFM experiment. Our method uses a new fast fitting algorithm based on the nonlinear Normal Mode Analysis (NMA) method NOLB to associate each molecule with its conformational state. AFMfit processes conformations of hundreds of AFM images of a single molecule in a few minutes on a single workstation, enabling analysis of larger datasets, including high-speed (HS)-AFM. We demonstrate the applications of our methods to synthetic and experimental AFM/HS-AFM data that include activated factor V and a membrane-embedded transient receptor potential channel TRPV3. AFMfit is an open-source Python package available at https://gricad-gitlab.univ-grenoble-alpes.fr/GruLab/AFMfit/ .</p>\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\"8 1\",\"pages\":\"1381\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479952/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s42003-025-08365-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08365-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

原子力显微镜(AFM)提供了一个独特的机会来研究蛋白质在近生理条件下在单分子水平上的构象动力学。然而,将AFM实验中测量的多个分子的二维分子表面解释为单个分子的三维构象动力学是一个重大挑战。在这里,我们提出了AFMfit,这是一种灵活的拟合过程,可以变形输入原子模型以匹配多个AFM观测值。拟合的模型形成了一个明确描述AFM实验的构象集合。该方法采用一种新的基于非线性正态分析(NMA)方法的快速拟合算法,将每个分子与其构象态关联起来。AFMfit可以在几分钟内在一个工作站上处理单个分子的数百个AFM图像的构象,从而可以分析更大的数据集,包括高速(HS)-AFM。我们展示了我们的方法在合成和实验AFM/HS-AFM数据中的应用,包括活化因子V和膜嵌入的瞬时受体电位通道TRPV3。AFMfit是一个开源Python包,可从https://gricad-gitlab.univ-grenoble-alpes.fr/GruLab/AFMfit/获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deciphering conformational dynamics in AFM data using fast nonlinear NMA and FFT-based search with AFMFit.

Atomic Force Microscopy (AFM) offers a unique opportunity to study the conformational dynamics of proteins in near-physiological conditions at the single-molecule level. However, interpreting the two-dimensional molecular surfaces of multiple molecules measured in AFM experiments as three-dimensional conformational dynamics of a single molecule poses a significant challenge. Here, we present AFMfit, a flexible fitting procedure that deforms an input atomic model to match multiple AFM observations. The fitted models form a conformational ensemble that unambiguously describes the AFM experiment. Our method uses a new fast fitting algorithm based on the nonlinear Normal Mode Analysis (NMA) method NOLB to associate each molecule with its conformational state. AFMfit processes conformations of hundreds of AFM images of a single molecule in a few minutes on a single workstation, enabling analysis of larger datasets, including high-speed (HS)-AFM. We demonstrate the applications of our methods to synthetic and experimental AFM/HS-AFM data that include activated factor V and a membrane-embedded transient receptor potential channel TRPV3. AFMfit is an open-source Python package available at https://gricad-gitlab.univ-grenoble-alpes.fr/GruLab/AFMfit/ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信