Bingyi Mo, Xiaoqian Liu, Lin Li, Shanshan Cheng, Yuan Zhu, Ming Yi, Lulu Lu
{"title":"不同损伤条件下工作记忆中神经元-星形胶质细胞网络的自我修复机制。","authors":"Bingyi Mo, Xiaoqian Liu, Lin Li, Shanshan Cheng, Yuan Zhu, Ming Yi, Lulu Lu","doi":"10.1007/s11571-025-10345-8","DOIUrl":null,"url":null,"abstract":"<p><p>The injury to neurons and connection structures in the nervous system is a key factor leading to neurodegenerative diseases. Self-repair function refers to the innate capacity of the neuron-astrocyte network to partially restore or maintain its function following injury, without external intervention. When the brain's nervous system is injured, how self-repair mechanisms work under various injury conditions and how to improve self-repair function remain unresolved. Through computational simulations of three distinct neurological injury scenarios, we investigated the self-repair function of spiking neuron-astrocyte networks in working memory tasks. Despite varying degrees of disruption of the network, all experiments (Self-Repair activated by synaptic connection injury, astrocytes injury, and internal noise interference) reveal that astrocytes can promote self-repair of the network during working memory tasks. Experiments on synaptic connection injury demonstrated that the network can maintain effective repair functionality under high injury conditions, which is associated with elevated calcium ion concentrations induced by increased glutamate release from presynaptic neurons. The modulation of astrocyte contributes to self-repair, and self-repair function decreases with increasing astrocyte injury. In addition, compared to the health network, internal noise interference has a small enhancement in the self-repair function of the network. Our findings elucidate the critical role of astrocyte-mediated signaling in maintaining network under different synaptic injury. This provides novel mechanistic insights into the threshold dynamics governing neuron network stability and early pathological transition in response to diverse neural injuries.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"160"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476346/pdf/","citationCount":"0","resultStr":"{\"title\":\"Self-repair mechanisms of spiking neuron-astrocyte networks in working memory under diverse injury conditions.\",\"authors\":\"Bingyi Mo, Xiaoqian Liu, Lin Li, Shanshan Cheng, Yuan Zhu, Ming Yi, Lulu Lu\",\"doi\":\"10.1007/s11571-025-10345-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The injury to neurons and connection structures in the nervous system is a key factor leading to neurodegenerative diseases. Self-repair function refers to the innate capacity of the neuron-astrocyte network to partially restore or maintain its function following injury, without external intervention. When the brain's nervous system is injured, how self-repair mechanisms work under various injury conditions and how to improve self-repair function remain unresolved. Through computational simulations of three distinct neurological injury scenarios, we investigated the self-repair function of spiking neuron-astrocyte networks in working memory tasks. Despite varying degrees of disruption of the network, all experiments (Self-Repair activated by synaptic connection injury, astrocytes injury, and internal noise interference) reveal that astrocytes can promote self-repair of the network during working memory tasks. Experiments on synaptic connection injury demonstrated that the network can maintain effective repair functionality under high injury conditions, which is associated with elevated calcium ion concentrations induced by increased glutamate release from presynaptic neurons. The modulation of astrocyte contributes to self-repair, and self-repair function decreases with increasing astrocyte injury. In addition, compared to the health network, internal noise interference has a small enhancement in the self-repair function of the network. Our findings elucidate the critical role of astrocyte-mediated signaling in maintaining network under different synaptic injury. This provides novel mechanistic insights into the threshold dynamics governing neuron network stability and early pathological transition in response to diverse neural injuries.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"160\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476346/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10345-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10345-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Self-repair mechanisms of spiking neuron-astrocyte networks in working memory under diverse injury conditions.
The injury to neurons and connection structures in the nervous system is a key factor leading to neurodegenerative diseases. Self-repair function refers to the innate capacity of the neuron-astrocyte network to partially restore or maintain its function following injury, without external intervention. When the brain's nervous system is injured, how self-repair mechanisms work under various injury conditions and how to improve self-repair function remain unresolved. Through computational simulations of three distinct neurological injury scenarios, we investigated the self-repair function of spiking neuron-astrocyte networks in working memory tasks. Despite varying degrees of disruption of the network, all experiments (Self-Repair activated by synaptic connection injury, astrocytes injury, and internal noise interference) reveal that astrocytes can promote self-repair of the network during working memory tasks. Experiments on synaptic connection injury demonstrated that the network can maintain effective repair functionality under high injury conditions, which is associated with elevated calcium ion concentrations induced by increased glutamate release from presynaptic neurons. The modulation of astrocyte contributes to self-repair, and self-repair function decreases with increasing astrocyte injury. In addition, compared to the health network, internal noise interference has a small enhancement in the self-repair function of the network. Our findings elucidate the critical role of astrocyte-mediated signaling in maintaining network under different synaptic injury. This provides novel mechanistic insights into the threshold dynamics governing neuron network stability and early pathological transition in response to diverse neural injuries.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.