中国老年人健康对照和轻度认知障碍个体情绪诱导视频数据集的构建与评价

IF 3.9 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-09-27 DOI:10.1007/s11571-025-10318-x
Tao Liang, Junxiao Yu, Keke Shi, Yihao Yao, Jie Li, Bin Liu, Wei Wang, Chengyu Liu, Liangcheng Qu, Kuiying Yin, Wentao Xiang, Jianqing Li
{"title":"中国老年人健康对照和轻度认知障碍个体情绪诱导视频数据集的构建与评价","authors":"Tao Liang, Junxiao Yu, Keke Shi, Yihao Yao, Jie Li, Bin Liu, Wei Wang, Chengyu Liu, Liangcheng Qu, Kuiying Yin, Wentao Xiang, Jianqing Li","doi":"10.1007/s11571-025-10318-x","DOIUrl":null,"url":null,"abstract":"<p><p>This work aimed to develop and validate an emotion-inducing video dataset for the Chinese elderly. The dataset was constructed by video collection, psychological evaluation, and elderly examination. 18 videos across six emotions (neutrality, sadness, anger, happiness, boredom, and tension) were selected for emotional induction. The effectiveness of the dataset was evaluated in 37 subjects, with two groups, 21 healthy controls (HC group) and 16 individuals with mild cognitive impairment (MCI group), who were assessed in a three-session experiment. Each session comprised one pretest and six emotion-inducing videos. The electrocardiogram (ECG) and electroencephalography (EEG) signals were synchronously recorded. After viewing each video, the subjects provided self-reports of discrete emotion labels, valence, and arousal scores using a modified Self-Assessment Manikin scale. Discrete emotion analysis, valence/arousal analysis, and ECG feature analysis were conducted by the ANOVA method. EEG feature analysis was assessed with a linear mixed-effects model. Discrete emotion analysis confirmed that happiness and sadness induced by the dataset show high agreement rates (e.g., happiness: HC 0.79, MCI 0.85 and sadness: HC 0.81, MCI 0.71), whereas boredom (HC 0.38, MCI 0.29) showed a comparatively lower consistency. Valence/arousal analysis revealed significant group differences for tension and boredom emotions. ECG feature analysis revealed significant differences in the baseline-normalized mean heart rate between HC and MCI groups in specific sessions. EEG feature analysis revealed that the MCI group exhibited higher relative band power values than did the HC group in the <math><mi>δ</mi></math> and <math><mi>θ</mi></math> bands.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-025-10318-x.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"154"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476350/pdf/","citationCount":"0","resultStr":"{\"title\":\"Construction and evaluation of an emotion-inducing video dataset towards Chinese elderly healthy controls and individuals with mild cognitive impairment.\",\"authors\":\"Tao Liang, Junxiao Yu, Keke Shi, Yihao Yao, Jie Li, Bin Liu, Wei Wang, Chengyu Liu, Liangcheng Qu, Kuiying Yin, Wentao Xiang, Jianqing Li\",\"doi\":\"10.1007/s11571-025-10318-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work aimed to develop and validate an emotion-inducing video dataset for the Chinese elderly. The dataset was constructed by video collection, psychological evaluation, and elderly examination. 18 videos across six emotions (neutrality, sadness, anger, happiness, boredom, and tension) were selected for emotional induction. The effectiveness of the dataset was evaluated in 37 subjects, with two groups, 21 healthy controls (HC group) and 16 individuals with mild cognitive impairment (MCI group), who were assessed in a three-session experiment. Each session comprised one pretest and six emotion-inducing videos. The electrocardiogram (ECG) and electroencephalography (EEG) signals were synchronously recorded. After viewing each video, the subjects provided self-reports of discrete emotion labels, valence, and arousal scores using a modified Self-Assessment Manikin scale. Discrete emotion analysis, valence/arousal analysis, and ECG feature analysis were conducted by the ANOVA method. EEG feature analysis was assessed with a linear mixed-effects model. Discrete emotion analysis confirmed that happiness and sadness induced by the dataset show high agreement rates (e.g., happiness: HC 0.79, MCI 0.85 and sadness: HC 0.81, MCI 0.71), whereas boredom (HC 0.38, MCI 0.29) showed a comparatively lower consistency. Valence/arousal analysis revealed significant group differences for tension and boredom emotions. ECG feature analysis revealed significant differences in the baseline-normalized mean heart rate between HC and MCI groups in specific sessions. EEG feature analysis revealed that the MCI group exhibited higher relative band power values than did the HC group in the <math><mi>δ</mi></math> and <math><mi>θ</mi></math> bands.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-025-10318-x.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"154\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476350/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10318-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10318-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在开发并验证中国老年人情绪诱导视频数据集。数据集由视频采集、心理评估和老年人检查组成。选取了包含6种情绪(中立、悲伤、愤怒、快乐、无聊、紧张)的18个视频进行情绪诱导。该数据集的有效性在37名受试者中进行了评估,其中包括两组,21名健康对照组(HC组)和16名轻度认知障碍患者(MCI组),他们在三个阶段的实验中进行了评估。每个环节包括一个预测和六个情感诱导视频。同步记录心电图(ECG)和脑电图(EEG)信号。观看完每段视频后,受试者使用改良的自我评估模型量表提供离散情绪标签、效价和唤醒分数的自我报告。采用方差分析方法进行离散情绪分析、价/觉醒分析和心电特征分析。脑电特征分析采用线性混合效应模型。离散情绪分析证实,数据集引起的快乐和悲伤具有较高的一致性(例如,快乐:HC 0.79, MCI 0.85,悲伤:HC 0.81, MCI 0.71),而无聊(HC 0.38, MCI 0.29)的一致性相对较低。效价/唤醒分析揭示了紧张和无聊情绪的显著组间差异。心电图特征分析显示,HC组和MCI组在特定时段的基线标准化平均心率存在显著差异。脑电特征分析显示,MCI组在δ和θ波段的相对波段功率值高于HC组。补充信息:在线版本包含补充资料,提供地址为10.1007/s11571-025-10318-x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction and evaluation of an emotion-inducing video dataset towards Chinese elderly healthy controls and individuals with mild cognitive impairment.

This work aimed to develop and validate an emotion-inducing video dataset for the Chinese elderly. The dataset was constructed by video collection, psychological evaluation, and elderly examination. 18 videos across six emotions (neutrality, sadness, anger, happiness, boredom, and tension) were selected for emotional induction. The effectiveness of the dataset was evaluated in 37 subjects, with two groups, 21 healthy controls (HC group) and 16 individuals with mild cognitive impairment (MCI group), who were assessed in a three-session experiment. Each session comprised one pretest and six emotion-inducing videos. The electrocardiogram (ECG) and electroencephalography (EEG) signals were synchronously recorded. After viewing each video, the subjects provided self-reports of discrete emotion labels, valence, and arousal scores using a modified Self-Assessment Manikin scale. Discrete emotion analysis, valence/arousal analysis, and ECG feature analysis were conducted by the ANOVA method. EEG feature analysis was assessed with a linear mixed-effects model. Discrete emotion analysis confirmed that happiness and sadness induced by the dataset show high agreement rates (e.g., happiness: HC 0.79, MCI 0.85 and sadness: HC 0.81, MCI 0.71), whereas boredom (HC 0.38, MCI 0.29) showed a comparatively lower consistency. Valence/arousal analysis revealed significant group differences for tension and boredom emotions. ECG feature analysis revealed significant differences in the baseline-normalized mean heart rate between HC and MCI groups in specific sessions. EEG feature analysis revealed that the MCI group exhibited higher relative band power values than did the HC group in the δ and θ bands.

Supplementary information: The online version contains supplementary material available at 10.1007/s11571-025-10318-x.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信