稀疏裂谷热发病率数据建模:零膨胀自激和自回归模型的贝叶斯视角。

IF 3 3区 医学 Q2 INFECTIOUS DISEASES
Alexandros Angelakis, Bryan O Nyawanda, Penelope Vounatsou
{"title":"稀疏裂谷热发病率数据建模:零膨胀自激和自回归模型的贝叶斯视角。","authors":"Alexandros Angelakis, Bryan O Nyawanda, Penelope Vounatsou","doi":"10.1186/s12879-025-11506-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Rift Valley fever (RVF) is a mosquito-borne zoonotic disease for which predictive modeling is often hindered by sparse data, particularly the high frequency of zero counts in both human and livestock surveillance systems. While zero-inflated models are commonly used for sparse data, several temporal count modelling frameworks exist, including less common self-exciting models that assume an initial case increases the likelihood of subsequent cases.</p><p><strong>Methods: </strong>This study compares three zero-inflated Bayesian models: the negative binomial (ZINB) with autoregressive temporal random effects, the self-exciting negative binomial (SE-NB) and the generalized autoregressive moving average negative binomial (GARMA-NB). The models were evaluated across simulated datasets with varying levels of sparsity.</p><p><strong>Results: </strong>We found that zero-inflation substantially improves predictive performance within specific sparsity thresholds: 29-94.5% (ZINB), 25-93% (SE-NB), and 30-95% (GARMA-NB). Applied to monthly RVF incidence data from northern Kenya (2018-2024), the ZINB model with a three-month rainfall lag provided the most accurate forecasts.</p><p><strong>Conclusion: </strong>These findings underscore the importance of zero-inflated negative binomial models and climate-based covariates in enhancing early warning systems for RVF-endemic regions.</p>","PeriodicalId":8981,"journal":{"name":"BMC Infectious Diseases","volume":"25 1","pages":"1221"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12481985/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modeling sparse Rift Valley fever incidence data: a Bayesian perspective on zero-inflated self-exciting and autoregressive models.\",\"authors\":\"Alexandros Angelakis, Bryan O Nyawanda, Penelope Vounatsou\",\"doi\":\"10.1186/s12879-025-11506-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Rift Valley fever (RVF) is a mosquito-borne zoonotic disease for which predictive modeling is often hindered by sparse data, particularly the high frequency of zero counts in both human and livestock surveillance systems. While zero-inflated models are commonly used for sparse data, several temporal count modelling frameworks exist, including less common self-exciting models that assume an initial case increases the likelihood of subsequent cases.</p><p><strong>Methods: </strong>This study compares three zero-inflated Bayesian models: the negative binomial (ZINB) with autoregressive temporal random effects, the self-exciting negative binomial (SE-NB) and the generalized autoregressive moving average negative binomial (GARMA-NB). The models were evaluated across simulated datasets with varying levels of sparsity.</p><p><strong>Results: </strong>We found that zero-inflation substantially improves predictive performance within specific sparsity thresholds: 29-94.5% (ZINB), 25-93% (SE-NB), and 30-95% (GARMA-NB). Applied to monthly RVF incidence data from northern Kenya (2018-2024), the ZINB model with a three-month rainfall lag provided the most accurate forecasts.</p><p><strong>Conclusion: </strong>These findings underscore the importance of zero-inflated negative binomial models and climate-based covariates in enhancing early warning systems for RVF-endemic regions.</p>\",\"PeriodicalId\":8981,\"journal\":{\"name\":\"BMC Infectious Diseases\",\"volume\":\"25 1\",\"pages\":\"1221\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12481985/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12879-025-11506-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12879-025-11506-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

背景:裂谷热是一种蚊媒人畜共患疾病,其预测建模常常受到数据稀疏的阻碍,特别是在人类和牲畜监测系统中,零计数的频率很高。虽然零膨胀模型通常用于稀疏数据,但存在几种时间计数建模框架,包括不太常见的自激模型,这些模型假设初始情况会增加后续情况的可能性。方法:比较了具有自回归时间随机效应的负二项(ZINB)、自激负二项(SE-NB)和广义自回归移动平均负二项(GARMA-NB)三种零膨胀贝叶斯模型。这些模型在不同稀疏度的模拟数据集上进行了评估。结果:我们发现,在特定的稀疏度阈值范围内,零通货膨胀显著提高了预测性能:29-94.5% (ZINB), 25-93% (SE-NB)和30-95% (GARMA-NB)。应用于肯尼亚北部每月裂谷热发病率数据(2018-2024年),具有三个月降雨滞后的ZINB模型提供了最准确的预测。结论:这些发现强调了零膨胀负二项模型和基于气候的协变量在加强裂谷热流行地区预警系统中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling sparse Rift Valley fever incidence data: a Bayesian perspective on zero-inflated self-exciting and autoregressive models.

Background: Rift Valley fever (RVF) is a mosquito-borne zoonotic disease for which predictive modeling is often hindered by sparse data, particularly the high frequency of zero counts in both human and livestock surveillance systems. While zero-inflated models are commonly used for sparse data, several temporal count modelling frameworks exist, including less common self-exciting models that assume an initial case increases the likelihood of subsequent cases.

Methods: This study compares three zero-inflated Bayesian models: the negative binomial (ZINB) with autoregressive temporal random effects, the self-exciting negative binomial (SE-NB) and the generalized autoregressive moving average negative binomial (GARMA-NB). The models were evaluated across simulated datasets with varying levels of sparsity.

Results: We found that zero-inflation substantially improves predictive performance within specific sparsity thresholds: 29-94.5% (ZINB), 25-93% (SE-NB), and 30-95% (GARMA-NB). Applied to monthly RVF incidence data from northern Kenya (2018-2024), the ZINB model with a three-month rainfall lag provided the most accurate forecasts.

Conclusion: These findings underscore the importance of zero-inflated negative binomial models and climate-based covariates in enhancing early warning systems for RVF-endemic regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Infectious Diseases
BMC Infectious Diseases 医学-传染病学
CiteScore
6.50
自引率
0.00%
发文量
860
审稿时长
3.3 months
期刊介绍: BMC Infectious Diseases is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of infectious and sexually transmitted diseases in humans, as well as related molecular genetics, pathophysiology, and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信