根瘤菌HR1101-4胞外多糖性质的探讨:介绍一种新的食品工业用胞外多糖。

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Umma Ayman Tishun, Farzana Sayed Sraboni, Mst Mamotaz Mohal, Md Rahat Manik, Shoriful Islam Joy, Asad Syed, Ling Shing Wong, Shirmin Islam, Md Abu Saleh, Shahriar Zaman
{"title":"根瘤菌HR1101-4胞外多糖性质的探讨:介绍一种新的食品工业用胞外多糖。","authors":"Umma Ayman Tishun, Farzana Sayed Sraboni, Mst Mamotaz Mohal, Md Rahat Manik, Shoriful Islam Joy, Asad Syed, Ling Shing Wong, Shirmin Islam, Md Abu Saleh, Shahriar Zaman","doi":"10.1007/s10529-025-03660-x","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial exopolysaccharides (EPSs) exhibit distinct physiological properties, including anti-inflammatory, anti-tumor, and anti-microbial activities that may have a range of industrial, pharmaceutical, and medical uses. This study aimed to separate, purify, and examine the properties of the Rhizobium sp. HR1101-4 EPS. The optimum parameter set (time, temperature, pH, sugar) for the production of EPS was determined. The highest yield was obtained at a temperature of 39 °C, a pH range of 8-10, and using mannose (0.2%) as the carbon source. The results of FT-IR and the NMR analysis revealed that the EPS is a mixture of hexoses with possible pentose sugars. Moreover, this structure showed positive antibiofilm activity against five pathogenic bacteria; Acinetobacter sp., Staphylococcus aureus, Shigella sonnei, Salmonella sp., and Shigella flexneri, as well as antioxidant activity (42%). Furthermore, the high water-holding (355%) and oil-holding capacity (170%) of the EPS may enhance the nutritional value and rheological characteristics of food products. The improved emulsifying activity of mustard oil suggested potential use for stabilizing emulsions. Additionally, the EPS showed promising flocculating activity, indicating its potential application in treatment of industrial wastewater. This also could be employed as a safe rheological agent and a nutritious food-grade additive for industrial use, paving the way for manufacturing innovation in near future.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 5","pages":"119"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the properties of Rhizobium sp. HR1101-4 exopolysaccharide: introducing a novel exopolysaccharide in food industry.\",\"authors\":\"Umma Ayman Tishun, Farzana Sayed Sraboni, Mst Mamotaz Mohal, Md Rahat Manik, Shoriful Islam Joy, Asad Syed, Ling Shing Wong, Shirmin Islam, Md Abu Saleh, Shahriar Zaman\",\"doi\":\"10.1007/s10529-025-03660-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial exopolysaccharides (EPSs) exhibit distinct physiological properties, including anti-inflammatory, anti-tumor, and anti-microbial activities that may have a range of industrial, pharmaceutical, and medical uses. This study aimed to separate, purify, and examine the properties of the Rhizobium sp. HR1101-4 EPS. The optimum parameter set (time, temperature, pH, sugar) for the production of EPS was determined. The highest yield was obtained at a temperature of 39 °C, a pH range of 8-10, and using mannose (0.2%) as the carbon source. The results of FT-IR and the NMR analysis revealed that the EPS is a mixture of hexoses with possible pentose sugars. Moreover, this structure showed positive antibiofilm activity against five pathogenic bacteria; Acinetobacter sp., Staphylococcus aureus, Shigella sonnei, Salmonella sp., and Shigella flexneri, as well as antioxidant activity (42%). Furthermore, the high water-holding (355%) and oil-holding capacity (170%) of the EPS may enhance the nutritional value and rheological characteristics of food products. The improved emulsifying activity of mustard oil suggested potential use for stabilizing emulsions. Additionally, the EPS showed promising flocculating activity, indicating its potential application in treatment of industrial wastewater. This also could be employed as a safe rheological agent and a nutritious food-grade additive for industrial use, paving the way for manufacturing innovation in near future.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":\"47 5\",\"pages\":\"119\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-025-03660-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-025-03660-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微生物外多糖(eps)具有独特的生理特性,包括抗炎、抗肿瘤和抗微生物活性,可能具有一系列工业、制药和医疗用途。本研究旨在分离纯化根瘤菌sp. HR1101-4 EPS,并对其性质进行研究。确定了EPS生产的最佳工艺参数(时间、温度、pH、糖)。以甘露糖(0.2%)为碳源,温度39℃,pH值8 ~ 10,产率最高。红外光谱(FT-IR)和核磁共振(NMR)分析结果表明,EPS是己糖和可能的戊糖的混合物。此外,该结构对5种病原菌表现出阳性的抗菌膜活性;不动杆菌、金黄色葡萄球菌、索尼氏志贺氏菌、沙门氏菌和福氏志贺氏菌,以及抗氧化活性(42%)。此外,EPS的高持水能力(355%)和高持油能力(170%)可以提高食品的营养价值和流变学特性。芥菜油乳化活性的提高提示了稳定乳剂的潜在用途。此外,EPS具有良好的絮凝活性,在工业废水处理中具有潜在的应用前景。这也可以作为一种安全的流变剂和营养的食品级添加剂用于工业用途,为不久的将来的制造业创新铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the properties of Rhizobium sp. HR1101-4 exopolysaccharide: introducing a novel exopolysaccharide in food industry.

Microbial exopolysaccharides (EPSs) exhibit distinct physiological properties, including anti-inflammatory, anti-tumor, and anti-microbial activities that may have a range of industrial, pharmaceutical, and medical uses. This study aimed to separate, purify, and examine the properties of the Rhizobium sp. HR1101-4 EPS. The optimum parameter set (time, temperature, pH, sugar) for the production of EPS was determined. The highest yield was obtained at a temperature of 39 °C, a pH range of 8-10, and using mannose (0.2%) as the carbon source. The results of FT-IR and the NMR analysis revealed that the EPS is a mixture of hexoses with possible pentose sugars. Moreover, this structure showed positive antibiofilm activity against five pathogenic bacteria; Acinetobacter sp., Staphylococcus aureus, Shigella sonnei, Salmonella sp., and Shigella flexneri, as well as antioxidant activity (42%). Furthermore, the high water-holding (355%) and oil-holding capacity (170%) of the EPS may enhance the nutritional value and rheological characteristics of food products. The improved emulsifying activity of mustard oil suggested potential use for stabilizing emulsions. Additionally, the EPS showed promising flocculating activity, indicating its potential application in treatment of industrial wastewater. This also could be employed as a safe rheological agent and a nutritious food-grade additive for industrial use, paving the way for manufacturing innovation in near future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信