纳米Pb(Zr0.95Ti0.05)O3陶瓷厚膜中弛豫铁电性质的出现,用于储能应用。

IF 11 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nirmal Prashanth Maria Joseph Raj, Hyunseok Song, Satyabrata Lenka, Geon-Tae Hwang, Dae-Yong Jeong, Mahesh Peddigari, Jungho Ryu
{"title":"纳米Pb(Zr0.95Ti0.05)O3陶瓷厚膜中弛豫铁电性质的出现,用于储能应用。","authors":"Nirmal Prashanth Maria Joseph Raj,&nbsp;Hyunseok Song,&nbsp;Satyabrata Lenka,&nbsp;Geon-Tae Hwang,&nbsp;Dae-Yong Jeong,&nbsp;Mahesh Peddigari,&nbsp;Jungho Ryu","doi":"10.1186/s40580-025-00511-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we demonstrated the nanostructuring of the ferroelectric (FE) phase of Pb(Zr<sub>0.95</sub>Ti<sub>0.05</sub>)O<sub>3</sub> (PZT-95/5) into a thick film with relaxor<b>-</b>like FE (RFE) characteristics. This transformation results in exceptionally high dielectric breakdown strength (<i>E</i><sub><i>DBS</i></sub>) and energy storage density properties. The high kinetic energy from aerosol deposition transformed the bulk PZT-95/5 from a normal FE system into a RFE system by forming a nanostructured grain with nanodomains within a nonpolar matrix. This nanostructure enables easy domain switching, resulting in low remanent polarization. The resulting high density of grain boundaries due to nanograin formation and the nonpolar structure act as barriers to charge flow, resulting in high breakdown strength. Collectively, these effects resulted in a significantly enhanced <i>E</i><sub><i>DBS</i></sub> of 5.6 MV/cm and a maximum polarization of 80 µC/cm<sup>2</sup>. These properties, evidenced by slim hysteresis loops, demonstrate that the prepared PZT-95/5 thick film is a superior capacitive material with a high recoverable energy density of 116 J/cm<sup>3</sup>. Furthermore, the film exhibited reliable fatigue endurance up to 10<sup>7</sup> cycles and thermal stability from room temperature to 140<sup>°</sup>C. The film also exhibited a peak power density of 35 MW/cm<sup>3</sup> under a practical electric field of 0.45 MV/cm (180 V) and a fast discharging speed (<i>τ</i><sub>0.9</sub>) of 230 ns. These properties, in addition to the minimal fabrication steps and superior capacitive characteristics, demonstrate the strong potential of the prepared PZT-95/5 thick film for use in next-generation energy storage devices.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12480236/pdf/","citationCount":"0","resultStr":"{\"title\":\"Emergence of relaxor-like ferroelectric nature in nanograined Pb(Zr0.95Ti0.05)O3 ceramic thick films for energy storage applications\",\"authors\":\"Nirmal Prashanth Maria Joseph Raj,&nbsp;Hyunseok Song,&nbsp;Satyabrata Lenka,&nbsp;Geon-Tae Hwang,&nbsp;Dae-Yong Jeong,&nbsp;Mahesh Peddigari,&nbsp;Jungho Ryu\",\"doi\":\"10.1186/s40580-025-00511-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we demonstrated the nanostructuring of the ferroelectric (FE) phase of Pb(Zr<sub>0.95</sub>Ti<sub>0.05</sub>)O<sub>3</sub> (PZT-95/5) into a thick film with relaxor<b>-</b>like FE (RFE) characteristics. This transformation results in exceptionally high dielectric breakdown strength (<i>E</i><sub><i>DBS</i></sub>) and energy storage density properties. The high kinetic energy from aerosol deposition transformed the bulk PZT-95/5 from a normal FE system into a RFE system by forming a nanostructured grain with nanodomains within a nonpolar matrix. This nanostructure enables easy domain switching, resulting in low remanent polarization. The resulting high density of grain boundaries due to nanograin formation and the nonpolar structure act as barriers to charge flow, resulting in high breakdown strength. Collectively, these effects resulted in a significantly enhanced <i>E</i><sub><i>DBS</i></sub> of 5.6 MV/cm and a maximum polarization of 80 µC/cm<sup>2</sup>. These properties, evidenced by slim hysteresis loops, demonstrate that the prepared PZT-95/5 thick film is a superior capacitive material with a high recoverable energy density of 116 J/cm<sup>3</sup>. Furthermore, the film exhibited reliable fatigue endurance up to 10<sup>7</sup> cycles and thermal stability from room temperature to 140<sup>°</sup>C. The film also exhibited a peak power density of 35 MW/cm<sup>3</sup> under a practical electric field of 0.45 MV/cm (180 V) and a fast discharging speed (<i>τ</i><sub>0.9</sub>) of 230 ns. These properties, in addition to the minimal fabrication steps and superior capacitive characteristics, demonstrate the strong potential of the prepared PZT-95/5 thick film for use in next-generation energy storage devices.</p></div>\",\"PeriodicalId\":712,\"journal\":{\"name\":\"Nano Convergence\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12480236/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Convergence\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40580-025-00511-3\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-025-00511-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们证明了Pb(Zr0.95Ti0.05)O3 (PZT-95/5)的铁电(FE)相的纳米结构成为具有弛豫样FE (RFE)特性的厚膜。这种转变导致了异常高的介电击穿强度(EDBS)和能量存储密度特性。气溶胶沉积产生的高动能通过在非极性基体中形成具有纳米畴的纳米结构颗粒,将PZT-95/5块体从普通FE体系转变为RFE体系。这种纳米结构可以实现容易的畴切换,从而产生低剩余极化。由于纳米颗粒的形成和非极性结构导致的高晶界密度作为电荷流动的障碍,从而产生高击穿强度。总的来说,这些效应显著增强了5.6 MV/cm的EDBS和80µC/cm2的最大极化。细磁滞回线表明,制备的PZT-95/5厚膜具有较高的可回收能量密度(116 J/cm3),是一种优异的电容性材料。此外,该薄膜具有高达107次循环的可靠疲劳耐久性和从室温到140°C的热稳定性。在0.45 MV/cm (180 V)的实际电场下,该薄膜的峰值功率密度为35 MW/cm3,放电速度τ0.9为230 ns。这些特性,除了最小的制造步骤和优越的电容特性外,还证明了制备的PZT-95/5厚膜在下一代储能设备中使用的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergence of relaxor-like ferroelectric nature in nanograined Pb(Zr0.95Ti0.05)O3 ceramic thick films for energy storage applications

In this study, we demonstrated the nanostructuring of the ferroelectric (FE) phase of Pb(Zr0.95Ti0.05)O3 (PZT-95/5) into a thick film with relaxor-like FE (RFE) characteristics. This transformation results in exceptionally high dielectric breakdown strength (EDBS) and energy storage density properties. The high kinetic energy from aerosol deposition transformed the bulk PZT-95/5 from a normal FE system into a RFE system by forming a nanostructured grain with nanodomains within a nonpolar matrix. This nanostructure enables easy domain switching, resulting in low remanent polarization. The resulting high density of grain boundaries due to nanograin formation and the nonpolar structure act as barriers to charge flow, resulting in high breakdown strength. Collectively, these effects resulted in a significantly enhanced EDBS of 5.6 MV/cm and a maximum polarization of 80 µC/cm2. These properties, evidenced by slim hysteresis loops, demonstrate that the prepared PZT-95/5 thick film is a superior capacitive material with a high recoverable energy density of 116 J/cm3. Furthermore, the film exhibited reliable fatigue endurance up to 107 cycles and thermal stability from room temperature to 140°C. The film also exhibited a peak power density of 35 MW/cm3 under a practical electric field of 0.45 MV/cm (180 V) and a fast discharging speed (τ0.9) of 230 ns. These properties, in addition to the minimal fabrication steps and superior capacitive characteristics, demonstrate the strong potential of the prepared PZT-95/5 thick film for use in next-generation energy storage devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信