基于机器学习方法的聚合物改性土-膨润土防渗墙回填体导电性预测及可解释性分析

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Heng Zhuang , Xian-Lei Fu , Hao Ni , Yan-Jun Du
{"title":"基于机器学习方法的聚合物改性土-膨润土防渗墙回填体导电性预测及可解释性分析","authors":"Heng Zhuang ,&nbsp;Xian-Lei Fu ,&nbsp;Hao Ni ,&nbsp;Yan-Jun Du","doi":"10.1016/j.envres.2025.122960","DOIUrl":null,"url":null,"abstract":"<div><div>Soil-bentonite backfills with low hydraulic conductivity are extensively used to control flow of groundwater at contaminated sites. Predicting hydraulic conductivity of backfills is challenging due to nonlinear couplings among chemistry reactions, backfill compositions, and in-situ stresses. This study developed a machine-learning framework that unifieed a curated dataset of 108 laboratory observations, systematic benchmarking of twelve algorithms, SHAP-based interpretability, and mechanism-guided feature subset optimization to balance accuracy with measurement cost. Validation used an 80/20 training/testing split with five-fold cross-validation for hyperparameter tuning, multi-metric evaluation, and a Taylor diagram for consistency appraisal. Peak test performance showed clear stratification: Gradient Boosting Regressor (<em>R</em><sup><em>2</em></sup> = 0.794), Support Vector Regression (<em>R</em><sup><em>2</em></sup> = 0.788), XGBoost (<em>R</em><sup><em>2</em></sup> = 0.783), Random Forest (<em>R</em><sup><em>2</em></sup> = 0.736), LightGBM (<em>R</em><sup><em>2</em></sup> = 0.698). Taylor diagram corroborated this ordering by proximity to the reference point. SHAP analysis identifieed leachate pH as the top contributor in Gradient Boosting Regressor, and explained why low ionic strength lowered the predicted hydraulic conductivity whereas higher ionic strength increased it. Feature-count analysis indicateed that a stable baseline requireed at least 5 features and that gains generally tapered after 9 to 10 features. The results motivated a three-tier workflow: rapid screening with a compact interaction set, routine design with curated features, and final validation with the all features set.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"286 ","pages":"Article 122960"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction and interpretability analysis of hydraulic conductivity for polymer-amended soil-bentonite cutoff wall backfills using machine learning methods\",\"authors\":\"Heng Zhuang ,&nbsp;Xian-Lei Fu ,&nbsp;Hao Ni ,&nbsp;Yan-Jun Du\",\"doi\":\"10.1016/j.envres.2025.122960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil-bentonite backfills with low hydraulic conductivity are extensively used to control flow of groundwater at contaminated sites. Predicting hydraulic conductivity of backfills is challenging due to nonlinear couplings among chemistry reactions, backfill compositions, and in-situ stresses. This study developed a machine-learning framework that unifieed a curated dataset of 108 laboratory observations, systematic benchmarking of twelve algorithms, SHAP-based interpretability, and mechanism-guided feature subset optimization to balance accuracy with measurement cost. Validation used an 80/20 training/testing split with five-fold cross-validation for hyperparameter tuning, multi-metric evaluation, and a Taylor diagram for consistency appraisal. Peak test performance showed clear stratification: Gradient Boosting Regressor (<em>R</em><sup><em>2</em></sup> = 0.794), Support Vector Regression (<em>R</em><sup><em>2</em></sup> = 0.788), XGBoost (<em>R</em><sup><em>2</em></sup> = 0.783), Random Forest (<em>R</em><sup><em>2</em></sup> = 0.736), LightGBM (<em>R</em><sup><em>2</em></sup> = 0.698). Taylor diagram corroborated this ordering by proximity to the reference point. SHAP analysis identifieed leachate pH as the top contributor in Gradient Boosting Regressor, and explained why low ionic strength lowered the predicted hydraulic conductivity whereas higher ionic strength increased it. Feature-count analysis indicateed that a stable baseline requireed at least 5 features and that gains generally tapered after 9 to 10 features. The results motivated a three-tier workflow: rapid screening with a compact interaction set, routine design with curated features, and final validation with the all features set.</div></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":\"286 \",\"pages\":\"Article 122960\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935125022133\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125022133","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

土-膨润土回填体是垂直防渗墙的关键屏障,但由于化学反应、回填体成分和地应力之间的非线性耦合,预测水力导电性仍然具有挑战性。本研究开发了一个机器学习框架,该框架将108个实验室观察数据集、12种算法的系统基准测试、基于shap的可解释性和机制指导的特征子集优化结合起来,以平衡准确性和测量成本。验证使用80/20的训练/测试分割,五倍交叉验证用于超参数调整,多度量评估,泰勒图用于一致性评估。峰值测试性能显示明显的分层:梯度增强回归(R2 = 0.794)、支持向量回归(R2 = 0.788)、XGBoost (R2 = 0.783)、随机森林(R2 = 0.736)、LightGBM (R2 = 0.698)。泰勒图通过接近参考点证实了这种顺序。SHAP分析将渗滤液pH值确定为梯度增强回归因子的最大影响因素,并解释了为什么低离子强度会降低预测的水力导电性,而高离子强度会增加。特征计数分析表明,一个稳定的基线需要至少5个特征,并且通常在9到10个特征之后收益逐渐减少。结果激发了一个三层工作流程:使用紧凑的交互集进行快速筛选,使用精心设计的功能进行例行设计,以及使用所有功能集进行最终验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prediction and interpretability analysis of hydraulic conductivity for polymer-amended soil-bentonite cutoff wall backfills using machine learning methods

Prediction and interpretability analysis of hydraulic conductivity for polymer-amended soil-bentonite cutoff wall backfills using machine learning methods
Soil-bentonite backfills with low hydraulic conductivity are extensively used to control flow of groundwater at contaminated sites. Predicting hydraulic conductivity of backfills is challenging due to nonlinear couplings among chemistry reactions, backfill compositions, and in-situ stresses. This study developed a machine-learning framework that unifieed a curated dataset of 108 laboratory observations, systematic benchmarking of twelve algorithms, SHAP-based interpretability, and mechanism-guided feature subset optimization to balance accuracy with measurement cost. Validation used an 80/20 training/testing split with five-fold cross-validation for hyperparameter tuning, multi-metric evaluation, and a Taylor diagram for consistency appraisal. Peak test performance showed clear stratification: Gradient Boosting Regressor (R2 = 0.794), Support Vector Regression (R2 = 0.788), XGBoost (R2 = 0.783), Random Forest (R2 = 0.736), LightGBM (R2 = 0.698). Taylor diagram corroborated this ordering by proximity to the reference point. SHAP analysis identifieed leachate pH as the top contributor in Gradient Boosting Regressor, and explained why low ionic strength lowered the predicted hydraulic conductivity whereas higher ionic strength increased it. Feature-count analysis indicateed that a stable baseline requireed at least 5 features and that gains generally tapered after 9 to 10 features. The results motivated a three-tier workflow: rapid screening with a compact interaction set, routine design with curated features, and final validation with the all features set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信