Natalia Zielonka, Adam Ząbek, Karolina Anna Mielko-Niziałek, Małgorzata Brzezińska-Rodak, Ewa Żymańczyk-Duda, Piotr Młynarz, Magdalena Klimek-Ochab
{"title":"代谢指纹图谱研究膦乙酸的生物降解及其对青霉菌代谢的影响。","authors":"Natalia Zielonka, Adam Ząbek, Karolina Anna Mielko-Niziałek, Małgorzata Brzezińska-Rodak, Ewa Żymańczyk-Duda, Piotr Młynarz, Magdalena Klimek-Ochab","doi":"10.1007/s10532-025-10192-8","DOIUrl":null,"url":null,"abstract":"<div><p>The application of metabolomic analysis to the study of fungal cell physiology provides a valuable means of elucidating the metabolic diversity of fungi. This study aims to identify metabolites that distinguish the metabolism of moulds based on the phosphorus source used in the culture medium, either inorganic phosphate (Pi) or phosphonoacetic acid (PA). A targeted metabolomics approach, using LC–MS combined with chemometric tools, facilitated the identification of metabolic differences between three fungal strains of the <i>Penicillium</i> genus: <i>Penicillium commune</i>, <i>Penicillium crustosum</i> S2, and <i>Penicillium funiculosum</i> S4. The availability of PA in the medium enables <i>P. commune</i> to synthesize compounds that stimulate cellular responses to unfavorable environmental conditions, while activating pathways involving precursors of secondary metabolites. Comparative analysis of cell-free extracts from <i>P. commune</i> and <i>P. funiculosum</i> S4 cultured on Pi-containing medium revealed increased levels of metabolites, including tyrosine, tryptophan, glutathione, and ethyl-3-hydroxybutyrate, in both fungal extracts. Furthermore, analysis of the cell-free extracts obtained from biomass grown on a medium containing PA showed similarities between <i>P. commune</i> and <i>P. crustosum</i> S2, as well as between the two wild strains. From these results, it can be concluded that the metabolic strategies of <i>P. commune</i> and <i>P. funiculosum</i> S4 are similar when Pi is the sole phosphorus source, whereas the use of phosphonate reveals common characteristics between the <i>P. commune</i> strain and <i>P. crustosum</i> S2. These observations allowed the identification of fungal biomarkers and provided insights into the mechanisms of metabolic response to changing environmental conditions.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479703/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolic fingerprinting to elucidate the biodegradation of phosphonoacetic acid and its impact on Penicillium metabolism\",\"authors\":\"Natalia Zielonka, Adam Ząbek, Karolina Anna Mielko-Niziałek, Małgorzata Brzezińska-Rodak, Ewa Żymańczyk-Duda, Piotr Młynarz, Magdalena Klimek-Ochab\",\"doi\":\"10.1007/s10532-025-10192-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The application of metabolomic analysis to the study of fungal cell physiology provides a valuable means of elucidating the metabolic diversity of fungi. This study aims to identify metabolites that distinguish the metabolism of moulds based on the phosphorus source used in the culture medium, either inorganic phosphate (Pi) or phosphonoacetic acid (PA). A targeted metabolomics approach, using LC–MS combined with chemometric tools, facilitated the identification of metabolic differences between three fungal strains of the <i>Penicillium</i> genus: <i>Penicillium commune</i>, <i>Penicillium crustosum</i> S2, and <i>Penicillium funiculosum</i> S4. The availability of PA in the medium enables <i>P. commune</i> to synthesize compounds that stimulate cellular responses to unfavorable environmental conditions, while activating pathways involving precursors of secondary metabolites. Comparative analysis of cell-free extracts from <i>P. commune</i> and <i>P. funiculosum</i> S4 cultured on Pi-containing medium revealed increased levels of metabolites, including tyrosine, tryptophan, glutathione, and ethyl-3-hydroxybutyrate, in both fungal extracts. Furthermore, analysis of the cell-free extracts obtained from biomass grown on a medium containing PA showed similarities between <i>P. commune</i> and <i>P. crustosum</i> S2, as well as between the two wild strains. From these results, it can be concluded that the metabolic strategies of <i>P. commune</i> and <i>P. funiculosum</i> S4 are similar when Pi is the sole phosphorus source, whereas the use of phosphonate reveals common characteristics between the <i>P. commune</i> strain and <i>P. crustosum</i> S2. These observations allowed the identification of fungal biomarkers and provided insights into the mechanisms of metabolic response to changing environmental conditions.</p></div>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"36 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479703/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10532-025-10192-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10192-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Metabolic fingerprinting to elucidate the biodegradation of phosphonoacetic acid and its impact on Penicillium metabolism
The application of metabolomic analysis to the study of fungal cell physiology provides a valuable means of elucidating the metabolic diversity of fungi. This study aims to identify metabolites that distinguish the metabolism of moulds based on the phosphorus source used in the culture medium, either inorganic phosphate (Pi) or phosphonoacetic acid (PA). A targeted metabolomics approach, using LC–MS combined with chemometric tools, facilitated the identification of metabolic differences between three fungal strains of the Penicillium genus: Penicillium commune, Penicillium crustosum S2, and Penicillium funiculosum S4. The availability of PA in the medium enables P. commune to synthesize compounds that stimulate cellular responses to unfavorable environmental conditions, while activating pathways involving precursors of secondary metabolites. Comparative analysis of cell-free extracts from P. commune and P. funiculosum S4 cultured on Pi-containing medium revealed increased levels of metabolites, including tyrosine, tryptophan, glutathione, and ethyl-3-hydroxybutyrate, in both fungal extracts. Furthermore, analysis of the cell-free extracts obtained from biomass grown on a medium containing PA showed similarities between P. commune and P. crustosum S2, as well as between the two wild strains. From these results, it can be concluded that the metabolic strategies of P. commune and P. funiculosum S4 are similar when Pi is the sole phosphorus source, whereas the use of phosphonate reveals common characteristics between the P. commune strain and P. crustosum S2. These observations allowed the identification of fungal biomarkers and provided insights into the mechanisms of metabolic response to changing environmental conditions.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.