一种用于抑制剂发现的鲁棒集成机器学习方法:HIV-1 NNRTI案例研究和MD模拟验证。

IF 3.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Anvesha Shree, Pratyush Pani, Malay Kumar Rana
{"title":"一种用于抑制剂发现的鲁棒集成机器学习方法:HIV-1 NNRTI案例研究和MD模拟验证。","authors":"Anvesha Shree, Pratyush Pani, Malay Kumar Rana","doi":"10.1002/asia.70340","DOIUrl":null,"url":null,"abstract":"<p><p>The growing demand for new therapeutics highlights the need for intelligent, cost-effective, and scalable drug discovery strategies. Here, we present an artificial intelligence (AI)-based ensemble framework to accelerate the identification of small-molecule inhibitors against therapeutic targets. As a case study, we applied this approach to HIV-1 reverse transcriptase (HIV-1 RT), an essential enzyme in viral replication. Our stacking ensemble model, trained on a curated ChEMBL dataset, achieved high predictive performance (90.3% accuracy, 89.4% ROC-AUC) and was used to screen the Natural Products Atlas (NPA) database. Promising hits were evaluated through physicochemical and ADMET filters, molecular docking, and 1 µs molecular dynamics (MD) simulations. Compound NP1, which exhibited stable binding to the NNRTI binding pocket, outperformed the FDA-approved drug doravirine in post-MD characterizations. Network analysis further suggested potential allosteric regulation via residues N136 and E138. This flexible AI-MD pipeline provides an efficient strategy for discovering and repurposing inhibitors, with broad applicability to other therapeutic targets.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e70340"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Ensemble Machine Learning Approach for Inhibitor Discovery: Case Study of HIV-1 NNRTI and Validation Using MD Simulation.\",\"authors\":\"Anvesha Shree, Pratyush Pani, Malay Kumar Rana\",\"doi\":\"10.1002/asia.70340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The growing demand for new therapeutics highlights the need for intelligent, cost-effective, and scalable drug discovery strategies. Here, we present an artificial intelligence (AI)-based ensemble framework to accelerate the identification of small-molecule inhibitors against therapeutic targets. As a case study, we applied this approach to HIV-1 reverse transcriptase (HIV-1 RT), an essential enzyme in viral replication. Our stacking ensemble model, trained on a curated ChEMBL dataset, achieved high predictive performance (90.3% accuracy, 89.4% ROC-AUC) and was used to screen the Natural Products Atlas (NPA) database. Promising hits were evaluated through physicochemical and ADMET filters, molecular docking, and 1 µs molecular dynamics (MD) simulations. Compound NP1, which exhibited stable binding to the NNRTI binding pocket, outperformed the FDA-approved drug doravirine in post-MD characterizations. Network analysis further suggested potential allosteric regulation via residues N136 and E138. This flexible AI-MD pipeline provides an efficient strategy for discovering and repurposing inhibitors, with broad applicability to other therapeutic targets.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\" \",\"pages\":\"e70340\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.70340\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.70340","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对新疗法日益增长的需求突出了对智能、成本效益和可扩展的药物发现策略的需求。在这里,我们提出了一个基于人工智能(AI)的集成框架,以加速识别针对治疗靶点的小分子抑制剂。作为一个案例研究,我们将这种方法应用于HIV-1逆转录酶(HIV-1 RT),这是病毒复制中必不可少的酶。我们的叠加集成模型在ChEMBL数据集上进行了训练,获得了很高的预测性能(准确率为90.3%,ROC-AUC为89.4%),并用于筛选天然产物图谱(NPA)数据库。通过物理化学和ADMET过滤器、分子对接和1µs分子动力学(MD)模拟来评估有希望的命中。化合物NP1表现出与NNRTI结合口袋的稳定结合,在md后表征中优于fda批准的药物doravirine。网络分析进一步表明,残基N136和E138可能具有变构调节作用。这种灵活的AI-MD管道提供了发现和重新利用抑制剂的有效策略,广泛适用于其他治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Ensemble Machine Learning Approach for Inhibitor Discovery: Case Study of HIV-1 NNRTI and Validation Using MD Simulation.

The growing demand for new therapeutics highlights the need for intelligent, cost-effective, and scalable drug discovery strategies. Here, we present an artificial intelligence (AI)-based ensemble framework to accelerate the identification of small-molecule inhibitors against therapeutic targets. As a case study, we applied this approach to HIV-1 reverse transcriptase (HIV-1 RT), an essential enzyme in viral replication. Our stacking ensemble model, trained on a curated ChEMBL dataset, achieved high predictive performance (90.3% accuracy, 89.4% ROC-AUC) and was used to screen the Natural Products Atlas (NPA) database. Promising hits were evaluated through physicochemical and ADMET filters, molecular docking, and 1 µs molecular dynamics (MD) simulations. Compound NP1, which exhibited stable binding to the NNRTI binding pocket, outperformed the FDA-approved drug doravirine in post-MD characterizations. Network analysis further suggested potential allosteric regulation via residues N136 and E138. This flexible AI-MD pipeline provides an efficient strategy for discovering and repurposing inhibitors, with broad applicability to other therapeutic targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信