生物杂交细菌作为活纳米工厂,通过抗菌-再生耦合破坏糖尿病伤口病理级联。

IF 9.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Wendi Xuan, Yupei Hu, Sicong Li, Xiaozhen Zhou, Meng Chen, Chenyao Wu, Xiang Gao, Gaoyan Xu, Jine Zhao, Lili Xia, Wei Feng, Yu Chen
{"title":"生物杂交细菌作为活纳米工厂,通过抗菌-再生耦合破坏糖尿病伤口病理级联。","authors":"Wendi Xuan, Yupei Hu, Sicong Li, Xiaozhen Zhou, Meng Chen, Chenyao Wu, Xiang Gao, Gaoyan Xu, Jine Zhao, Lili Xia, Wei Feng, Yu Chen","doi":"10.1002/adhm.202503107","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic wound healing remains a formidable clinical challenge due to persistent biofilm formation, chronic inflammation, and excessive reactive oxygen species (ROS) accumulation. Current therapeutic approaches often lack synchronized antimicrobial-regenerative mechanisms and fail to provide sustained efficacy. Here, this work engineers a bioengineered living hydrogel system (BMB181@ALG) that leverages genetically modified Bacillus thuringiensis strain BMB181 as a melanin nanofactory, enabling in situ biosynthesis of multifunctional melanin nanoparticles (MNPs). Encapsulation within the hydrogel preserves bacterial metabolic activity, ensuring continuous MNPs production. These nanoparticles exhibit a dual-mode therapeutic action, including photothermal antibacterial activity under near-infrared irradiation for biofilm disruption and pathogen eradication, and ROS scavenging and antioxidant effects to modulate the inflammatory microenvironment. The sustained release of MNPs further promotes angiogenesis, enhances tissue regeneration, and dynamically regulates the diabetic wound microenvironment. Notably, the self-replenishing nature of this biohybrid system ensures long-term therapeutic efficacy, minimizing the need for frequent interventions. This study establishes a bacteria-driven therapeutic paradigm, demonstrating the translational potential of living microbial systems for next-generation precision wound management.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e03107"},"PeriodicalIF":9.6000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biohybrid Bacteria as Living Nanofactories for Disrupting Diabetic Wound Pathological Cascade via Antimicrobial-Regenerative Coupling.\",\"authors\":\"Wendi Xuan, Yupei Hu, Sicong Li, Xiaozhen Zhou, Meng Chen, Chenyao Wu, Xiang Gao, Gaoyan Xu, Jine Zhao, Lili Xia, Wei Feng, Yu Chen\",\"doi\":\"10.1002/adhm.202503107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic wound healing remains a formidable clinical challenge due to persistent biofilm formation, chronic inflammation, and excessive reactive oxygen species (ROS) accumulation. Current therapeutic approaches often lack synchronized antimicrobial-regenerative mechanisms and fail to provide sustained efficacy. Here, this work engineers a bioengineered living hydrogel system (BMB181@ALG) that leverages genetically modified Bacillus thuringiensis strain BMB181 as a melanin nanofactory, enabling in situ biosynthesis of multifunctional melanin nanoparticles (MNPs). Encapsulation within the hydrogel preserves bacterial metabolic activity, ensuring continuous MNPs production. These nanoparticles exhibit a dual-mode therapeutic action, including photothermal antibacterial activity under near-infrared irradiation for biofilm disruption and pathogen eradication, and ROS scavenging and antioxidant effects to modulate the inflammatory microenvironment. The sustained release of MNPs further promotes angiogenesis, enhances tissue regeneration, and dynamically regulates the diabetic wound microenvironment. Notably, the self-replenishing nature of this biohybrid system ensures long-term therapeutic efficacy, minimizing the need for frequent interventions. This study establishes a bacteria-driven therapeutic paradigm, demonstrating the translational potential of living microbial systems for next-generation precision wound management.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e03107\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202503107\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202503107","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于持续的生物膜形成、慢性炎症和过多的活性氧(ROS)积累,糖尿病伤口愈合仍然是一个艰巨的临床挑战。目前的治疗方法往往缺乏同步的抗菌素再生机制,无法提供持续的疗效。在这里,这项工作设计了一个生物工程活水凝胶系统(BMB181@ALG),该系统利用转基因苏云金芽孢杆菌菌株BMB181作为黑色素纳米工厂,实现了多功能黑色素纳米颗粒(MNPs)的原位生物合成。水凝胶内的包封保存了细菌的代谢活性,确保了MNPs的连续生产。这些纳米颗粒表现出双重模式的治疗作用,包括近红外照射下的光热抗菌活性,用于破坏生物膜和根除病原体,以及ROS清除和抗氧化作用,以调节炎症微环境。MNPs的持续释放进一步促进血管生成,增强组织再生,并动态调节糖尿病创面微环境。值得注意的是,这种生物混合系统的自我补充特性确保了长期的治疗效果,最大限度地减少了频繁干预的需要。本研究建立了一种细菌驱动的治疗范例,展示了活微生物系统在下一代精确伤口管理中的转化潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biohybrid Bacteria as Living Nanofactories for Disrupting Diabetic Wound Pathological Cascade via Antimicrobial-Regenerative Coupling.

Diabetic wound healing remains a formidable clinical challenge due to persistent biofilm formation, chronic inflammation, and excessive reactive oxygen species (ROS) accumulation. Current therapeutic approaches often lack synchronized antimicrobial-regenerative mechanisms and fail to provide sustained efficacy. Here, this work engineers a bioengineered living hydrogel system (BMB181@ALG) that leverages genetically modified Bacillus thuringiensis strain BMB181 as a melanin nanofactory, enabling in situ biosynthesis of multifunctional melanin nanoparticles (MNPs). Encapsulation within the hydrogel preserves bacterial metabolic activity, ensuring continuous MNPs production. These nanoparticles exhibit a dual-mode therapeutic action, including photothermal antibacterial activity under near-infrared irradiation for biofilm disruption and pathogen eradication, and ROS scavenging and antioxidant effects to modulate the inflammatory microenvironment. The sustained release of MNPs further promotes angiogenesis, enhances tissue regeneration, and dynamically regulates the diabetic wound microenvironment. Notably, the self-replenishing nature of this biohybrid system ensures long-term therapeutic efficacy, minimizing the need for frequent interventions. This study establishes a bacteria-driven therapeutic paradigm, demonstrating the translational potential of living microbial systems for next-generation precision wound management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信