异构体笼形工程:辛烷(C8N8O16)作为潜在高能量密度材料的计算研究

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yunlu Li, Dongrun Tang, Mei Xue, Shangbiao Feng, Guanchao Lan and Jianlong Wang
{"title":"异构体笼形工程:辛烷(C8N8O16)作为潜在高能量密度材料的计算研究","authors":"Yunlu Li, Dongrun Tang, Mei Xue, Shangbiao Feng, Guanchao Lan and Jianlong Wang","doi":"10.1039/D5NJ02965A","DOIUrl":null,"url":null,"abstract":"<p >The energy-safety dilemma in high-energy density materials (HEDMs) necessitates innovative molecular design strategies. Here, we report the first systematic computational investigation of octanitrocuneane (<strong>isoONC</strong>), a constitutional isomer of octaniotrocubane (<strong>ONC</strong>), as a model system for cage engineering <em>via</em> structural isomerism. Density functional theory calculations reveal that <strong>isoONC</strong> achieves comparable energetic properties (density = 2.07 g cm<small><sup>−3</sup></small>, detonation velocity = 9.8 km s<small><sup>−1</sup></small>) to <strong>ONC</strong> (density = 2.06 g cm<small><sup>−3</sup></small>, detonation velocity = 9.8 km s<small><sup>−1</sup></small>) while potentially offering enhanced safety performance. The cuneane framework has a 5.3% reduction in cage strain energy from 967.4 to 916 kJ mol<small><sup>−1</sup></small> and a 52% improvement in calculated impact sensitivity threshold from 3.2 cm to 4.9 cm (<em>h</em><small><sub>50</sub></small>). Enhanced safety originates from stronger trigger bonds (284.5 <em>vs.</em> 274.5 kJ mol<small><sup>−1</sup></small>), more uniform electrostatic potential distribution, reduced steric frustration and enhanced intermolecular interactions. This computational study establishes structural isomerization as a promising molecular design strategy for cage-type energetic materials, though experimental validation remains essential.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 38","pages":" 16797-16803"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cage engineering via isomerism: a computational study of octanitrocuneane (C8N8O16) as a potential high-energy density material\",\"authors\":\"Yunlu Li, Dongrun Tang, Mei Xue, Shangbiao Feng, Guanchao Lan and Jianlong Wang\",\"doi\":\"10.1039/D5NJ02965A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The energy-safety dilemma in high-energy density materials (HEDMs) necessitates innovative molecular design strategies. Here, we report the first systematic computational investigation of octanitrocuneane (<strong>isoONC</strong>), a constitutional isomer of octaniotrocubane (<strong>ONC</strong>), as a model system for cage engineering <em>via</em> structural isomerism. Density functional theory calculations reveal that <strong>isoONC</strong> achieves comparable energetic properties (density = 2.07 g cm<small><sup>−3</sup></small>, detonation velocity = 9.8 km s<small><sup>−1</sup></small>) to <strong>ONC</strong> (density = 2.06 g cm<small><sup>−3</sup></small>, detonation velocity = 9.8 km s<small><sup>−1</sup></small>) while potentially offering enhanced safety performance. The cuneane framework has a 5.3% reduction in cage strain energy from 967.4 to 916 kJ mol<small><sup>−1</sup></small> and a 52% improvement in calculated impact sensitivity threshold from 3.2 cm to 4.9 cm (<em>h</em><small><sub>50</sub></small>). Enhanced safety originates from stronger trigger bonds (284.5 <em>vs.</em> 274.5 kJ mol<small><sup>−1</sup></small>), more uniform electrostatic potential distribution, reduced steric frustration and enhanced intermolecular interactions. This computational study establishes structural isomerization as a promising molecular design strategy for cage-type energetic materials, though experimental validation remains essential.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 38\",\"pages\":\" 16797-16803\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj02965a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj02965a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高能密度材料(HEDMs)的能量安全困境需要创新的分子设计策略。在这里,我们报告的第一个系统计算调查octanitrocuneane (isoONC),宪法的异构体octaniotrocubane (ONC),作为一个模型系统笼工程通过结构同分异构现象。密度泛函理论计算表明,isoONC具有与ONC(密度= 2.07 g cm−3,爆速= 9.8 km s−1)相当的能量特性(密度= 2.06 g cm−3,爆速= 9.8 km s−1),同时具有潜在的增强的安全性能。cuneane框架的笼形应变能从967.4降低到916 kJ mol−1,降低5.3%,计算的冲击灵敏度阈值从3.2 cm提高到4.9 cm (h50),提高52%。增强的安全性源于更强的触发键(284.5 kJ mol−1 vs 274.5 kJ mol−1)、更均匀的静电势分布、更少的位阻和更强的分子间相互作用。本计算研究建立了结构异构化作为一种有前途的笼型含能材料的分子设计策略,尽管实验验证仍然必不可少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cage engineering via isomerism: a computational study of octanitrocuneane (C8N8O16) as a potential high-energy density material

Cage engineering via isomerism: a computational study of octanitrocuneane (C8N8O16) as a potential high-energy density material

The energy-safety dilemma in high-energy density materials (HEDMs) necessitates innovative molecular design strategies. Here, we report the first systematic computational investigation of octanitrocuneane (isoONC), a constitutional isomer of octaniotrocubane (ONC), as a model system for cage engineering via structural isomerism. Density functional theory calculations reveal that isoONC achieves comparable energetic properties (density = 2.07 g cm−3, detonation velocity = 9.8 km s−1) to ONC (density = 2.06 g cm−3, detonation velocity = 9.8 km s−1) while potentially offering enhanced safety performance. The cuneane framework has a 5.3% reduction in cage strain energy from 967.4 to 916 kJ mol−1 and a 52% improvement in calculated impact sensitivity threshold from 3.2 cm to 4.9 cm (h50). Enhanced safety originates from stronger trigger bonds (284.5 vs. 274.5 kJ mol−1), more uniform electrostatic potential distribution, reduced steric frustration and enhanced intermolecular interactions. This computational study establishes structural isomerization as a promising molecular design strategy for cage-type energetic materials, though experimental validation remains essential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信