具有量子效应的三角栅finfet的一种新的精确解析模型

IF 3.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
M. Hemalatha;N. B. Balamurugan;M. Suguna;D. Sriram Kumar
{"title":"具有量子效应的三角栅finfet的一种新的精确解析模型","authors":"M. Hemalatha;N. B. Balamurugan;M. Suguna;D. Sriram Kumar","doi":"10.1109/TDEI.2025.3579447","DOIUrl":null,"url":null,"abstract":"In this study, we present a comprehensive analytical model for triangular gate (TG) fin-shaped field-effect transistors (FinFETs) that fully incorporate quantum effects. Our model extends the traditional analytical solution to the Schrödinger-Poisson equation using a variational technique. Specifically, we derive an analytical expression for the inversion charge distribution function (ICDF), often referred to as the wave function, specifically tailored for TG FinFETs. Utilizing this ICDF, we calculate key device parameters such as the inversion charge centroid, subthreshold swing (SS), drain-induced barrier lowering (DIBL), threshold voltage, inversion charge, and drain current. Our methodology is versatile, accommodating various device geometries and operational biases. To validate our model, we performed a comparative analysis with results from TCAD simulations, demonstrating strong agreement and substantiating the accuracy of our approach.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 5","pages":"2683-2692"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Precise Analytical Modeling for Triangular Gate FinFETs With Quantum Effects\",\"authors\":\"M. Hemalatha;N. B. Balamurugan;M. Suguna;D. Sriram Kumar\",\"doi\":\"10.1109/TDEI.2025.3579447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present a comprehensive analytical model for triangular gate (TG) fin-shaped field-effect transistors (FinFETs) that fully incorporate quantum effects. Our model extends the traditional analytical solution to the Schrödinger-Poisson equation using a variational technique. Specifically, we derive an analytical expression for the inversion charge distribution function (ICDF), often referred to as the wave function, specifically tailored for TG FinFETs. Utilizing this ICDF, we calculate key device parameters such as the inversion charge centroid, subthreshold swing (SS), drain-induced barrier lowering (DIBL), threshold voltage, inversion charge, and drain current. Our methodology is versatile, accommodating various device geometries and operational biases. To validate our model, we performed a comparative analysis with results from TCAD simulations, demonstrating strong agreement and substantiating the accuracy of our approach.\",\"PeriodicalId\":13247,\"journal\":{\"name\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"volume\":\"32 5\",\"pages\":\"2683-2692\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11036083/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11036083/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一个全面的三角栅极(TG)鳍形场效应晶体管(finfet)的分析模型,充分考虑了量子效应。我们的模型使用变分技术扩展了Schrödinger-Poisson方程的传统解析解。具体地说,我们推导了反转电荷分布函数(ICDF)的解析表达式,通常称为波函数,专门为TG finfet量身定制。利用该ICDF,我们计算了关键器件参数,如反转电荷质心、亚阈值摆幅(SS)、漏极势垒降低(DIBL)、阈值电压、反转电荷和漏极电流。我们的方法是通用的,适应各种器件几何形状和操作偏差。为了验证我们的模型,我们与TCAD模拟的结果进行了比较分析,证明了我们的方法的一致性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Precise Analytical Modeling for Triangular Gate FinFETs With Quantum Effects
In this study, we present a comprehensive analytical model for triangular gate (TG) fin-shaped field-effect transistors (FinFETs) that fully incorporate quantum effects. Our model extends the traditional analytical solution to the Schrödinger-Poisson equation using a variational technique. Specifically, we derive an analytical expression for the inversion charge distribution function (ICDF), often referred to as the wave function, specifically tailored for TG FinFETs. Utilizing this ICDF, we calculate key device parameters such as the inversion charge centroid, subthreshold swing (SS), drain-induced barrier lowering (DIBL), threshold voltage, inversion charge, and drain current. Our methodology is versatile, accommodating various device geometries and operational biases. To validate our model, we performed a comparative analysis with results from TCAD simulations, demonstrating strong agreement and substantiating the accuracy of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Dielectrics and Electrical Insulation
IEEE Transactions on Dielectrics and Electrical Insulation 工程技术-工程:电子与电气
CiteScore
6.00
自引率
22.60%
发文量
309
审稿时长
5.2 months
期刊介绍: Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信