Aleksey A. Petrov;Sergey Yu. Savinov;Ravil Kh. Amirov;Igor S. Samoylov
{"title":"非沸腾液氮的纳秒放电","authors":"Aleksey A. Petrov;Sergey Yu. Savinov;Ravil Kh. Amirov;Igor S. Samoylov","doi":"10.1109/TDEI.2025.3571687","DOIUrl":null,"url":null,"abstract":"Nanosecond discharge has been studied in non-boiling liquid nitrogen. The discharge is initiated in the gap in the central conductor of a coaxial waveguide with an impedance of <inline-formula> <tex-math>$50~\\Omega $ </tex-math></inline-formula>. The gap varied within 10–<inline-formula> <tex-math>$100~\\mu $ </tex-math></inline-formula>m. The dielectric of the waveguide and the discharge medium is non-boiling liquid nitrogen at atmospheric pressure and temperature 65 K. The amplitude of the voltage pulse is +/–12–25 kV, the duration is 7 ns, the voltage rise time is 150 ps. It is found that the leading edge of the discharge current is less than 80 ps. According to estimates, the electron ionization rate <inline-formula> <tex-math>$\\nu _{i}$ </tex-math></inline-formula> is more than <inline-formula> <tex-math>$7.5\\cdot 10^{{10}}$ </tex-math></inline-formula> <inline-formula> <tex-math>${\\mathrm {s}}^{-{1}}$ </tex-math></inline-formula> and the ionization rate constant <inline-formula> <tex-math>${k} _{i}$ </tex-math></inline-formula> is more than <inline-formula> <tex-math>$4.2\\cdot 10^{-{12}}$ </tex-math></inline-formula> cm3<inline-formula> <tex-math>${\\mathrm {s}}^{-{1}}$ </tex-math></inline-formula> in non-boiling liquid nitrogen at 65 K. A passing electromagnetic coupling wave with amplitude about 10 kV and duration 150 ps is detected behind the discharge gap in the waveguide. The formation of electromagnetic coupling wave is numerically demonstrated. The dependence of the discharge delay time on the electric field in the gap is measured. The formation of <inline-formula> <tex-math>$20~\\mu $ </tex-math></inline-formula>m size erosion craters is found at the surface of the electrodes demonstrating the possible role of the micro-explosive processes in the discharge mechanism.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 5","pages":"2783-2787"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanosecond Discharge in Non-Boiling Liquid Nitrogen\",\"authors\":\"Aleksey A. Petrov;Sergey Yu. Savinov;Ravil Kh. Amirov;Igor S. Samoylov\",\"doi\":\"10.1109/TDEI.2025.3571687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanosecond discharge has been studied in non-boiling liquid nitrogen. The discharge is initiated in the gap in the central conductor of a coaxial waveguide with an impedance of <inline-formula> <tex-math>$50~\\\\Omega $ </tex-math></inline-formula>. The gap varied within 10–<inline-formula> <tex-math>$100~\\\\mu $ </tex-math></inline-formula>m. The dielectric of the waveguide and the discharge medium is non-boiling liquid nitrogen at atmospheric pressure and temperature 65 K. The amplitude of the voltage pulse is +/–12–25 kV, the duration is 7 ns, the voltage rise time is 150 ps. It is found that the leading edge of the discharge current is less than 80 ps. According to estimates, the electron ionization rate <inline-formula> <tex-math>$\\\\nu _{i}$ </tex-math></inline-formula> is more than <inline-formula> <tex-math>$7.5\\\\cdot 10^{{10}}$ </tex-math></inline-formula> <inline-formula> <tex-math>${\\\\mathrm {s}}^{-{1}}$ </tex-math></inline-formula> and the ionization rate constant <inline-formula> <tex-math>${k} _{i}$ </tex-math></inline-formula> is more than <inline-formula> <tex-math>$4.2\\\\cdot 10^{-{12}}$ </tex-math></inline-formula> cm3<inline-formula> <tex-math>${\\\\mathrm {s}}^{-{1}}$ </tex-math></inline-formula> in non-boiling liquid nitrogen at 65 K. A passing electromagnetic coupling wave with amplitude about 10 kV and duration 150 ps is detected behind the discharge gap in the waveguide. The formation of electromagnetic coupling wave is numerically demonstrated. The dependence of the discharge delay time on the electric field in the gap is measured. The formation of <inline-formula> <tex-math>$20~\\\\mu $ </tex-math></inline-formula>m size erosion craters is found at the surface of the electrodes demonstrating the possible role of the micro-explosive processes in the discharge mechanism.\",\"PeriodicalId\":13247,\"journal\":{\"name\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"volume\":\"32 5\",\"pages\":\"2783-2787\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11008446/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11008446/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Nanosecond Discharge in Non-Boiling Liquid Nitrogen
Nanosecond discharge has been studied in non-boiling liquid nitrogen. The discharge is initiated in the gap in the central conductor of a coaxial waveguide with an impedance of $50~\Omega $ . The gap varied within 10–$100~\mu $ m. The dielectric of the waveguide and the discharge medium is non-boiling liquid nitrogen at atmospheric pressure and temperature 65 K. The amplitude of the voltage pulse is +/–12–25 kV, the duration is 7 ns, the voltage rise time is 150 ps. It is found that the leading edge of the discharge current is less than 80 ps. According to estimates, the electron ionization rate $\nu _{i}$ is more than $7.5\cdot 10^{{10}}$ ${\mathrm {s}}^{-{1}}$ and the ionization rate constant ${k} _{i}$ is more than $4.2\cdot 10^{-{12}}$ cm3${\mathrm {s}}^{-{1}}$ in non-boiling liquid nitrogen at 65 K. A passing electromagnetic coupling wave with amplitude about 10 kV and duration 150 ps is detected behind the discharge gap in the waveguide. The formation of electromagnetic coupling wave is numerically demonstrated. The dependence of the discharge delay time on the electric field in the gap is measured. The formation of $20~\mu $ m size erosion craters is found at the surface of the electrodes demonstrating the possible role of the micro-explosive processes in the discharge mechanism.
期刊介绍:
Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.