Pouya Bakhti, Min-Gwa Park, Meshkat Rajaee, Chang Sub Shin, Seodong Shin
{"title":"用C13中性电流相互作用重访反应堆反中微子5mev碰撞","authors":"Pouya Bakhti, Min-Gwa Park, Meshkat Rajaee, Chang Sub Shin, Seodong Shin","doi":"10.1103/s64c-l1p9","DOIUrl":null,"url":null,"abstract":"For the first time, we comprehensively examine the potential of a neutral-current interaction of reactor neutrino with C</a:mi></a:mrow>13</a:mn></a:mrow></a:mmultiscripts></a:mrow></a:math> emitting a 3.685 MeV photon to identify the origin of the 5 MeV bump in reactor antineutrino spectra observed through the inverse beta decay process. This anomaly may be due to new physics, reactor antineutrino flux inaccuracies, or inverse beta decay systematics. The 3.685 MeV photon released during the deexcitation of <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mrow><d:mrow><d:mmultiscripts><d:mrow><d:msup><d:mrow><d:mi mathvariant=\"normal\">C</d:mi></d:mrow><d:mrow><d:mo>*</d:mo></d:mrow></d:msup></d:mrow><d:mprescripts/><d:none/><d:mrow><d:mn>13</d:mn></d:mrow></d:mmultiscripts></d:mrow></d:mrow></d:math> to its ground state is observable in liquid scintillator detectors. Remarkably, we confirm the powerfulness of our proposal by completely ruling out a new physics scenario explaining the bump from the existing NEOS data. We also explore the potential of current and forthcoming experiments, including solar neutrino studies at JUNO, pion and muon decay-at-rest experiments at OscSNS, and isotope decay-at-rest studies at Yemilab, to measure the cross section precisely enough to distinguish the expected bump and the theoretical flux models via our channel. Additionally, we propose a novel method to track the time evolution of reactor isotopes by analyzing the <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mmultiscripts><g:mrow><g:mi mathvariant=\"normal\">C</g:mi></g:mrow><g:mprescripts/><g:none/><g:mrow><g:mn>13</g:mn></g:mrow></g:mmultiscripts></g:mrow></g:math> signal, which yields critical insights into the contributions of <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mrow><j:mmultiscripts><j:mrow><j:mi mathvariant=\"normal\">U</j:mi></j:mrow><j:mprescripts/><j:none/><j:mrow><j:mn>235</j:mn></j:mrow></j:mmultiscripts></j:mrow></j:math> and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:mmultiscripts><m:mrow><m:mi>Pu</m:mi></m:mrow><m:mprescripts/><m:none/><m:mrow><m:mn>239</m:mn></m:mrow></m:mmultiscripts></m:mrow></m:math> to the bump, acting as a robust tool.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"16 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting reactor antineutrino 5 MeV bump with C13 neutral-current interaction\",\"authors\":\"Pouya Bakhti, Min-Gwa Park, Meshkat Rajaee, Chang Sub Shin, Seodong Shin\",\"doi\":\"10.1103/s64c-l1p9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time, we comprehensively examine the potential of a neutral-current interaction of reactor neutrino with C</a:mi></a:mrow>13</a:mn></a:mrow></a:mmultiscripts></a:mrow></a:math> emitting a 3.685 MeV photon to identify the origin of the 5 MeV bump in reactor antineutrino spectra observed through the inverse beta decay process. This anomaly may be due to new physics, reactor antineutrino flux inaccuracies, or inverse beta decay systematics. The 3.685 MeV photon released during the deexcitation of <d:math xmlns:d=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><d:mrow><d:mrow><d:mmultiscripts><d:mrow><d:msup><d:mrow><d:mi mathvariant=\\\"normal\\\">C</d:mi></d:mrow><d:mrow><d:mo>*</d:mo></d:mrow></d:msup></d:mrow><d:mprescripts/><d:none/><d:mrow><d:mn>13</d:mn></d:mrow></d:mmultiscripts></d:mrow></d:mrow></d:math> to its ground state is observable in liquid scintillator detectors. Remarkably, we confirm the powerfulness of our proposal by completely ruling out a new physics scenario explaining the bump from the existing NEOS data. We also explore the potential of current and forthcoming experiments, including solar neutrino studies at JUNO, pion and muon decay-at-rest experiments at OscSNS, and isotope decay-at-rest studies at Yemilab, to measure the cross section precisely enough to distinguish the expected bump and the theoretical flux models via our channel. Additionally, we propose a novel method to track the time evolution of reactor isotopes by analyzing the <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mrow><g:mmultiscripts><g:mrow><g:mi mathvariant=\\\"normal\\\">C</g:mi></g:mrow><g:mprescripts/><g:none/><g:mrow><g:mn>13</g:mn></g:mrow></g:mmultiscripts></g:mrow></g:math> signal, which yields critical insights into the contributions of <j:math xmlns:j=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><j:mrow><j:mmultiscripts><j:mrow><j:mi mathvariant=\\\"normal\\\">U</j:mi></j:mrow><j:mprescripts/><j:none/><j:mrow><j:mn>235</j:mn></j:mrow></j:mmultiscripts></j:mrow></j:math> and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mrow><m:mmultiscripts><m:mrow><m:mi>Pu</m:mi></m:mrow><m:mprescripts/><m:none/><m:mrow><m:mn>239</m:mn></m:mrow></m:mmultiscripts></m:mrow></m:math> to the bump, acting as a robust tool.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/s64c-l1p9\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/s64c-l1p9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Revisiting reactor antineutrino 5 MeV bump with C13 neutral-current interaction
For the first time, we comprehensively examine the potential of a neutral-current interaction of reactor neutrino with C13 emitting a 3.685 MeV photon to identify the origin of the 5 MeV bump in reactor antineutrino spectra observed through the inverse beta decay process. This anomaly may be due to new physics, reactor antineutrino flux inaccuracies, or inverse beta decay systematics. The 3.685 MeV photon released during the deexcitation of C*13 to its ground state is observable in liquid scintillator detectors. Remarkably, we confirm the powerfulness of our proposal by completely ruling out a new physics scenario explaining the bump from the existing NEOS data. We also explore the potential of current and forthcoming experiments, including solar neutrino studies at JUNO, pion and muon decay-at-rest experiments at OscSNS, and isotope decay-at-rest studies at Yemilab, to measure the cross section precisely enough to distinguish the expected bump and the theoretical flux models via our channel. Additionally, we propose a novel method to track the time evolution of reactor isotopes by analyzing the C13 signal, which yields critical insights into the contributions of U235 and Pu239 to the bump, acting as a robust tool.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.