靶向敲除SmCPS4可提高丹参酮在丹参中的产量

IF 6.2 1区 农林科学 Q1 AGRICULTURAL ENGINEERING
Jin Shao, Ling Li, Han Zheng, Bowen Peng, Xinyi Hu, Yi Ye, Kexuan Tang
{"title":"靶向敲除SmCPS4可提高丹参酮在丹参中的产量","authors":"Jin Shao, Ling Li, Han Zheng, Bowen Peng, Xinyi Hu, Yi Ye, Kexuan Tang","doi":"10.1016/j.indcrop.2025.121999","DOIUrl":null,"url":null,"abstract":"Tanshinones are pharmaceutically active diterpenoids produced by the medicinal plant <em>Salvia miltiorrhiza</em>, possessing clinical bioactivities such as vasodilation and antiarrhythmic properties. In this study, we efficiently edited <em>SmCPS4</em>, a diterpene synthetase gene generating (<em>ent</em>-)13-epi-manoyl oxide in a competing branch of tanshinone biosynthesis. Building upon protoplast-optimized gene-editing elements, we developed an <em>Agrobacterium</em>-based transformation protocol achieving 69.4 % editing efficiency at the endogenous <em>SmPDS</em> locus. Targeted disruption of <em>SmCPS4</em> altered the accumulation patterns of four major tanshinones, as quantified by UPLC-TQMS. Among these, cryptotanshinone levels increased substantially (1.53-fold), while dihydrotanshinone rose by 1.59-fold. The total tanshinone content in the mutant lines reached 4.09 mg/g DW, representing a 1.42-fold increase compared to the control. This was accompanied by coordinated upregulation of biosynthetic genes (<em>SmHMGS</em>, <em>SmGGPPS</em>, <em>SmCYP76AH3, SmCYP71D373/375</em>) and transcriptional activators (<em>SmMYB1/9b, SmbHLH10/37, SmERF115, SmWRKY1/2, SmGRAS1/3, SmSPL7</em>, <em>SmNAC2</em>). Mechanistic investigations revealed that <em>SmCPS4</em> suppression relieves metabolic flux constraints in the tanshinone pathway while activating compensatory transcriptional networks. Our findings establish a robust framework for redirecting terpenoid metabolism in medicinal plants, providing actionable strategies for engineering high-tanshinone cultivars of <em>S. miltiorrhiza</em>.","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"55 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted knockout of SmCPS4 elevates tanshinone production in Salvia miltiorrhiza\",\"authors\":\"Jin Shao, Ling Li, Han Zheng, Bowen Peng, Xinyi Hu, Yi Ye, Kexuan Tang\",\"doi\":\"10.1016/j.indcrop.2025.121999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tanshinones are pharmaceutically active diterpenoids produced by the medicinal plant <em>Salvia miltiorrhiza</em>, possessing clinical bioactivities such as vasodilation and antiarrhythmic properties. In this study, we efficiently edited <em>SmCPS4</em>, a diterpene synthetase gene generating (<em>ent</em>-)13-epi-manoyl oxide in a competing branch of tanshinone biosynthesis. Building upon protoplast-optimized gene-editing elements, we developed an <em>Agrobacterium</em>-based transformation protocol achieving 69.4 % editing efficiency at the endogenous <em>SmPDS</em> locus. Targeted disruption of <em>SmCPS4</em> altered the accumulation patterns of four major tanshinones, as quantified by UPLC-TQMS. Among these, cryptotanshinone levels increased substantially (1.53-fold), while dihydrotanshinone rose by 1.59-fold. The total tanshinone content in the mutant lines reached 4.09 mg/g DW, representing a 1.42-fold increase compared to the control. This was accompanied by coordinated upregulation of biosynthetic genes (<em>SmHMGS</em>, <em>SmGGPPS</em>, <em>SmCYP76AH3, SmCYP71D373/375</em>) and transcriptional activators (<em>SmMYB1/9b, SmbHLH10/37, SmERF115, SmWRKY1/2, SmGRAS1/3, SmSPL7</em>, <em>SmNAC2</em>). Mechanistic investigations revealed that <em>SmCPS4</em> suppression relieves metabolic flux constraints in the tanshinone pathway while activating compensatory transcriptional networks. Our findings establish a robust framework for redirecting terpenoid metabolism in medicinal plants, providing actionable strategies for engineering high-tanshinone cultivars of <em>S. miltiorrhiza</em>.\",\"PeriodicalId\":13581,\"journal\":{\"name\":\"Industrial Crops and Products\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Crops and Products\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.indcrop.2025.121999\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.indcrop.2025.121999","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

丹参酮是药用植物丹参产生的具有药理活性的二萜类化合物,具有血管舒张和抗心律失常等临床生物活性。在这项研究中,我们有效地编辑了SmCPS4,这是一种在丹参酮生物合成的竞争分支中产生(ent-)13-外皮壬基氧化物的二萜合成酶基因。基于原生质体优化的基因编辑元件,我们开发了一种基于农杆菌的转化方案,在内源性SmPDS位点上的编辑效率达到69.4% %。通过UPLC-TQMS量化,SmCPS4的靶向破坏改变了四种主要丹参酮的积累模式。其中隐丹参酮含量显著增加(1.53倍),二氢丹参酮含量显著增加(1.59倍)。突变系丹参酮总含量达4.09 mg/g DW,比对照增加1.42倍。这伴随着生物合成基因(SmHMGS、SmGGPPS、SmCYP76AH3、SmCYP71D373/375)和转录激活因子(SmMYB1/9b、SmbHLH10/37、SmERF115、SmWRKY1/2、SmGRAS1/3、SmSPL7、SmNAC2)的协同上调。机制研究表明,SmCPS4抑制减轻丹参酮通路的代谢通量限制,同时激活代偿转录网络。我们的研究结果为药用植物萜类代谢的重定向建立了一个强大的框架,为丹参酮含量高的丹参酮品种的工程设计提供了可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeted knockout of SmCPS4 elevates tanshinone production in Salvia miltiorrhiza
Tanshinones are pharmaceutically active diterpenoids produced by the medicinal plant Salvia miltiorrhiza, possessing clinical bioactivities such as vasodilation and antiarrhythmic properties. In this study, we efficiently edited SmCPS4, a diterpene synthetase gene generating (ent-)13-epi-manoyl oxide in a competing branch of tanshinone biosynthesis. Building upon protoplast-optimized gene-editing elements, we developed an Agrobacterium-based transformation protocol achieving 69.4 % editing efficiency at the endogenous SmPDS locus. Targeted disruption of SmCPS4 altered the accumulation patterns of four major tanshinones, as quantified by UPLC-TQMS. Among these, cryptotanshinone levels increased substantially (1.53-fold), while dihydrotanshinone rose by 1.59-fold. The total tanshinone content in the mutant lines reached 4.09 mg/g DW, representing a 1.42-fold increase compared to the control. This was accompanied by coordinated upregulation of biosynthetic genes (SmHMGS, SmGGPPS, SmCYP76AH3, SmCYP71D373/375) and transcriptional activators (SmMYB1/9b, SmbHLH10/37, SmERF115, SmWRKY1/2, SmGRAS1/3, SmSPL7, SmNAC2). Mechanistic investigations revealed that SmCPS4 suppression relieves metabolic flux constraints in the tanshinone pathway while activating compensatory transcriptional networks. Our findings establish a robust framework for redirecting terpenoid metabolism in medicinal plants, providing actionable strategies for engineering high-tanshinone cultivars of S. miltiorrhiza.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial Crops and Products
Industrial Crops and Products 农林科学-农业工程
CiteScore
9.50
自引率
8.50%
发文量
1518
审稿时长
43 days
期刊介绍: Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信