Wagner S. Brum, Laia Montoliu-Gaya, Gunnar Brinkmalm, Diana Piotrowska, Elena Camporesi, Carsten Jäger, Helena S. Isaksson, Sven Martin, Jonas Kindberg, Juan Lantero-Rodriguez, João Pedro Ferrari-Souza, Alexis Moscoso, Andrea L. Benedet, Shorena Janelidze, Johan Gobom, Henrik Zetterberg, Oskar Hansson, Eduardo R. Zimmer, Nicholas J. Ashton, Thomas Arendt, Tammaryn Lashley, Jens T. Stieler, Max Holzer, Ole Fröbert, Kaj Blennow
{"title":"冬眠中可逆的tau蛋白过度磷酸化:血液生物标志物和脑组织研究。","authors":"Wagner S. Brum, Laia Montoliu-Gaya, Gunnar Brinkmalm, Diana Piotrowska, Elena Camporesi, Carsten Jäger, Helena S. Isaksson, Sven Martin, Jonas Kindberg, Juan Lantero-Rodriguez, João Pedro Ferrari-Souza, Alexis Moscoso, Andrea L. Benedet, Shorena Janelidze, Johan Gobom, Henrik Zetterberg, Oskar Hansson, Eduardo R. Zimmer, Nicholas J. Ashton, Thomas Arendt, Tammaryn Lashley, Jens T. Stieler, Max Holzer, Ole Fröbert, Kaj Blennow","doi":"10.1007/s00401-025-02930-2","DOIUrl":null,"url":null,"abstract":"<div><p>Tau hyperphosphorylation, a key neuropathological feature of tauopathies such as Alzheimer’s disease (AD), also occurs physiologically during mammalian hibernation and is fully reversed upon arousal, offering a unique translational model to study tau metabolism. However, limited data exist on insoluble and soluble tau alterations during hibernation and on patterns of tau fragment concentrations in the hibernating mammalian brain. We quantified tau biomarkers in plasma samples from ten free-ranging brown bears (<i>Ursus arctos</i>), captured during both their active summer period and hibernation in the winter, using clinically validated immunoassays and immunoprecipitation mass spectrometry (IP-MS) techniques. We also analyzed brain tissue from ten golden Syrian hamsters (<i>Mesocricetus auratus</i>) subjected to induced torpor (hibernation) versus euthermic (non-hibernating) states by quantifying multiple phosphorylated and non-phosphorylated tau peptides with an IP-MS method previously applied in human brain tissue. In brown bears, plasma levels of phosphorylated tau (p-tau) biomarkers p-tau181 and p-tau217 significantly increased during hibernation compared to summer (median increases of 362% and 294% by IP-MS, respectively), with similar increases found with immunoassays. Additional plasma p-tau biomarkers associated with AD pathology, including p-tau205 and p-tau231, were also increased during bear hibernation. In hamster brains, p-tau217, and p-tau231 were similarly elevated during torpor, while tau fragments from the microtubule-binding region (MTBR), associated with tangle aggregation, were not increased. In contrast, brain tissue from <i>n</i> = 10 AD patients, analyzed with the same IP-MS method, exhibited striking increases in p-tau (~ 50,000% for p-tau217) and MTBR fragments (~ 20,000% for MTBR tau354-369) compared with <i>n</i> = 10 human controls. We show that hibernation-linked tau hyperphosphorylation involves some of the same phospho-sites altered in AD, but occurs without MTBR tau aggregation. This highlights hibernation as a reversible, non-pathological model to study tau biology and mechanisms underlying AD due to its reversibility and lack of tau aggregation despite hyperphosphorylation in key AD tau phospho-sites.</p></div>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":"150 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00401-025-02930-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Reversible tau hyperphosphorylation in hibernation: a blood biomarker and brain tissue study\",\"authors\":\"Wagner S. Brum, Laia Montoliu-Gaya, Gunnar Brinkmalm, Diana Piotrowska, Elena Camporesi, Carsten Jäger, Helena S. Isaksson, Sven Martin, Jonas Kindberg, Juan Lantero-Rodriguez, João Pedro Ferrari-Souza, Alexis Moscoso, Andrea L. Benedet, Shorena Janelidze, Johan Gobom, Henrik Zetterberg, Oskar Hansson, Eduardo R. Zimmer, Nicholas J. Ashton, Thomas Arendt, Tammaryn Lashley, Jens T. Stieler, Max Holzer, Ole Fröbert, Kaj Blennow\",\"doi\":\"10.1007/s00401-025-02930-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tau hyperphosphorylation, a key neuropathological feature of tauopathies such as Alzheimer’s disease (AD), also occurs physiologically during mammalian hibernation and is fully reversed upon arousal, offering a unique translational model to study tau metabolism. However, limited data exist on insoluble and soluble tau alterations during hibernation and on patterns of tau fragment concentrations in the hibernating mammalian brain. We quantified tau biomarkers in plasma samples from ten free-ranging brown bears (<i>Ursus arctos</i>), captured during both their active summer period and hibernation in the winter, using clinically validated immunoassays and immunoprecipitation mass spectrometry (IP-MS) techniques. We also analyzed brain tissue from ten golden Syrian hamsters (<i>Mesocricetus auratus</i>) subjected to induced torpor (hibernation) versus euthermic (non-hibernating) states by quantifying multiple phosphorylated and non-phosphorylated tau peptides with an IP-MS method previously applied in human brain tissue. In brown bears, plasma levels of phosphorylated tau (p-tau) biomarkers p-tau181 and p-tau217 significantly increased during hibernation compared to summer (median increases of 362% and 294% by IP-MS, respectively), with similar increases found with immunoassays. Additional plasma p-tau biomarkers associated with AD pathology, including p-tau205 and p-tau231, were also increased during bear hibernation. In hamster brains, p-tau217, and p-tau231 were similarly elevated during torpor, while tau fragments from the microtubule-binding region (MTBR), associated with tangle aggregation, were not increased. In contrast, brain tissue from <i>n</i> = 10 AD patients, analyzed with the same IP-MS method, exhibited striking increases in p-tau (~ 50,000% for p-tau217) and MTBR fragments (~ 20,000% for MTBR tau354-369) compared with <i>n</i> = 10 human controls. We show that hibernation-linked tau hyperphosphorylation involves some of the same phospho-sites altered in AD, but occurs without MTBR tau aggregation. This highlights hibernation as a reversible, non-pathological model to study tau biology and mechanisms underlying AD due to its reversibility and lack of tau aggregation despite hyperphosphorylation in key AD tau phospho-sites.</p></div>\",\"PeriodicalId\":7012,\"journal\":{\"name\":\"Acta Neuropathologica\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00401-025-02930-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Neuropathologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00401-025-02930-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00401-025-02930-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Reversible tau hyperphosphorylation in hibernation: a blood biomarker and brain tissue study
Tau hyperphosphorylation, a key neuropathological feature of tauopathies such as Alzheimer’s disease (AD), also occurs physiologically during mammalian hibernation and is fully reversed upon arousal, offering a unique translational model to study tau metabolism. However, limited data exist on insoluble and soluble tau alterations during hibernation and on patterns of tau fragment concentrations in the hibernating mammalian brain. We quantified tau biomarkers in plasma samples from ten free-ranging brown bears (Ursus arctos), captured during both their active summer period and hibernation in the winter, using clinically validated immunoassays and immunoprecipitation mass spectrometry (IP-MS) techniques. We also analyzed brain tissue from ten golden Syrian hamsters (Mesocricetus auratus) subjected to induced torpor (hibernation) versus euthermic (non-hibernating) states by quantifying multiple phosphorylated and non-phosphorylated tau peptides with an IP-MS method previously applied in human brain tissue. In brown bears, plasma levels of phosphorylated tau (p-tau) biomarkers p-tau181 and p-tau217 significantly increased during hibernation compared to summer (median increases of 362% and 294% by IP-MS, respectively), with similar increases found with immunoassays. Additional plasma p-tau biomarkers associated with AD pathology, including p-tau205 and p-tau231, were also increased during bear hibernation. In hamster brains, p-tau217, and p-tau231 were similarly elevated during torpor, while tau fragments from the microtubule-binding region (MTBR), associated with tangle aggregation, were not increased. In contrast, brain tissue from n = 10 AD patients, analyzed with the same IP-MS method, exhibited striking increases in p-tau (~ 50,000% for p-tau217) and MTBR fragments (~ 20,000% for MTBR tau354-369) compared with n = 10 human controls. We show that hibernation-linked tau hyperphosphorylation involves some of the same phospho-sites altered in AD, but occurs without MTBR tau aggregation. This highlights hibernation as a reversible, non-pathological model to study tau biology and mechanisms underlying AD due to its reversibility and lack of tau aggregation despite hyperphosphorylation in key AD tau phospho-sites.
期刊介绍:
Acta Neuropathologica publishes top-quality papers on the pathology of neurological diseases and experimental studies on molecular and cellular mechanisms using in vitro and in vivo models, ideally validated by analysis of human tissues. The journal accepts Original Papers, Review Articles, Case Reports, and Scientific Correspondence (Letters). Manuscripts must adhere to ethical standards, including review by appropriate ethics committees for human studies and compliance with principles of laboratory animal care for animal experiments. Failure to comply may result in rejection of the manuscript, and authors are responsible for ensuring accuracy and adherence to these requirements.