等离子体热电子与光热效应协同作用增强电催化CO2还原中C2选择性。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Linlin Chen,Cenfeng Fu,Canyu Hu,Yu Bai,Yawen Jiang,Yuan Zhong,Xinyu Wang,Chuansheng Hu,Ran Long,Yingpu Bi,Yujie Xiong
{"title":"等离子体热电子与光热效应协同作用增强电催化CO2还原中C2选择性。","authors":"Linlin Chen,Cenfeng Fu,Canyu Hu,Yu Bai,Yawen Jiang,Yuan Zhong,Xinyu Wang,Chuansheng Hu,Ran Long,Yingpu Bi,Yujie Xiong","doi":"10.1002/anie.202515432","DOIUrl":null,"url":null,"abstract":"Surface plasmon-enhanced electrocatalytic CO2 reduction offers an attractive dimension beyond conventional electrocatalytic methods by optimizing photon utilization to simplify electrocatalytic reactor designs and enhance reaction activity/selectivity. However, the synergistic regulation mechanism of the complex multiple plasmonic effects on the CO2 reduction reaction, particularly under electrochemical bias, remains to be thoroughly investigated. This study, based on copper plasmonic electrodes, reveals the key role of localized surface plasmon resonance (LSPR) in enhancing CO2 conversion and facilitating the transition of the key intermediate *CO from bridge to atop adsorption configuration. Through a combination of experiments and density functional theory calculations, we show that the synergy of plasmonic hot electrons and photothermal effect effectively reduces the C─C coupling energy barrier. Systematic measurements clarify the correlation between the plasmonic excitation of the electrode and the enhanced selectivity of C2 products. Under optimized conditions, synergetic plasmonic effects significantly promote the CO2 conversion and enhance the Faradaic efficiency (FE) of C2 products, with a maximum increase from 57% to 87%. This work not only provides a new perspective for understanding the complex synergistic mechanisms of plasmonic effects, but also opens a new avenue for achieving selective electrocatalytic CO2 conversion.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"6 1","pages":"e202515432"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing C2 Selectivity in Electrocatalytic CO2 Reduction Via Synergy of Plasmonic Hot Electrons and Photothermal Effect.\",\"authors\":\"Linlin Chen,Cenfeng Fu,Canyu Hu,Yu Bai,Yawen Jiang,Yuan Zhong,Xinyu Wang,Chuansheng Hu,Ran Long,Yingpu Bi,Yujie Xiong\",\"doi\":\"10.1002/anie.202515432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface plasmon-enhanced electrocatalytic CO2 reduction offers an attractive dimension beyond conventional electrocatalytic methods by optimizing photon utilization to simplify electrocatalytic reactor designs and enhance reaction activity/selectivity. However, the synergistic regulation mechanism of the complex multiple plasmonic effects on the CO2 reduction reaction, particularly under electrochemical bias, remains to be thoroughly investigated. This study, based on copper plasmonic electrodes, reveals the key role of localized surface plasmon resonance (LSPR) in enhancing CO2 conversion and facilitating the transition of the key intermediate *CO from bridge to atop adsorption configuration. Through a combination of experiments and density functional theory calculations, we show that the synergy of plasmonic hot electrons and photothermal effect effectively reduces the C─C coupling energy barrier. Systematic measurements clarify the correlation between the plasmonic excitation of the electrode and the enhanced selectivity of C2 products. Under optimized conditions, synergetic plasmonic effects significantly promote the CO2 conversion and enhance the Faradaic efficiency (FE) of C2 products, with a maximum increase from 57% to 87%. This work not only provides a new perspective for understanding the complex synergistic mechanisms of plasmonic effects, but also opens a new avenue for achieving selective electrocatalytic CO2 conversion.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"6 1\",\"pages\":\"e202515432\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202515432\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202515432","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

表面等离子体增强的电催化二氧化碳还原提供了一个超越传统电催化方法的有吸引力的方面,通过优化光子利用来简化电催化反应器的设计,提高反应活性/选择性。然而,复合多等离子体效应对CO2还原反应的协同调控机制,特别是电化学偏压下的协同调控机制,仍有待深入研究。本研究基于铜等离子体电极,揭示了局部表面等离子体共振(LSPR)在提高CO2转化和促进关键中间体*CO从桥向顶吸附构型转变中的关键作用。通过实验和密度泛函理论计算相结合,我们证明了等离子体热电子和光热效应的协同作用有效地降低了C─C耦合能垒。系统测量阐明了电极的等离子体激发与C2产物选择性增强之间的关系。在优化条件下,协同等离子体效应显著促进了CO2的转化,提高了C2产物的法拉第效率(FE),最高可从57%提高到87%。这项工作不仅为理解等离子体效应的复杂协同机制提供了新的视角,而且为实现选择性电催化CO2转化开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing C2 Selectivity in Electrocatalytic CO2 Reduction Via Synergy of Plasmonic Hot Electrons and Photothermal Effect.
Surface plasmon-enhanced electrocatalytic CO2 reduction offers an attractive dimension beyond conventional electrocatalytic methods by optimizing photon utilization to simplify electrocatalytic reactor designs and enhance reaction activity/selectivity. However, the synergistic regulation mechanism of the complex multiple plasmonic effects on the CO2 reduction reaction, particularly under electrochemical bias, remains to be thoroughly investigated. This study, based on copper plasmonic electrodes, reveals the key role of localized surface plasmon resonance (LSPR) in enhancing CO2 conversion and facilitating the transition of the key intermediate *CO from bridge to atop adsorption configuration. Through a combination of experiments and density functional theory calculations, we show that the synergy of plasmonic hot electrons and photothermal effect effectively reduces the C─C coupling energy barrier. Systematic measurements clarify the correlation between the plasmonic excitation of the electrode and the enhanced selectivity of C2 products. Under optimized conditions, synergetic plasmonic effects significantly promote the CO2 conversion and enhance the Faradaic efficiency (FE) of C2 products, with a maximum increase from 57% to 87%. This work not only provides a new perspective for understanding the complex synergistic mechanisms of plasmonic effects, but also opens a new avenue for achieving selective electrocatalytic CO2 conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信