解读硼酸镁聚阴离子阴极高容量的起源

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Camilla Tacconis, Sunita Dey, Carson D. McLaughlin, Debashis Tripathy, Heather F. Greer, Shaoliang Guan, Iuliia Mikulska, Israel Temprano, Clare P. Grey, S. E. Dutton
{"title":"解读硼酸镁聚阴离子阴极高容量的起源","authors":"Camilla Tacconis, Sunita Dey, Carson D. McLaughlin, Debashis Tripathy, Heather F. Greer, Shaoliang Guan, Iuliia Mikulska, Israel Temprano, Clare P. Grey, S. E. Dutton","doi":"10.1039/d5ta07239e","DOIUrl":null,"url":null,"abstract":"Recent reviews have highlighted borate polyanion systems as promising high-voltage cathode candidates for rechargeable Mg-ion batteries (RMBs) [Coordination Chemistry Reviews, 427, 213551 (2021)]. However, evaluating the electrochemical performance of cathodes for Mg-ion batteries is challenging, with many reports relying on an observed electrochemical capacity rather than demonstrating Mg-ion (de)intercalation. To address these two points, we study three classes of borate polyanions: orthoborates M<small><sub>3</sub></small>(BO<small><sub>3</sub></small>)<small><sub>2</sub></small>, ludwigites M<small><sub>3</sub></small>BO<small><sub>5</sub></small>, and pyroborates M<small><sub>2</sub></small>B<small><sub>2</sub></small>O<small><sub>5</sub></small> and use a suite of experimental techniques to investigate de-magnesiation on charging vs Li metal with a Li electrolyte. We select five representative materials Mg<small><sub>2</sub></small>Mn(BO<small><sub>3</sub></small>)<small><sub>2</sub></small>, Mg<small><sub>2</sub></small>Ni(BO<small><sub>3</sub></small>)<small><sub>2</sub></small>, Mg<small><sub>2</sub></small>FeBO<small><sub>5</sub></small>, MgFeB<small><sub>2</sub></small>O<small><sub>5</sub></small> and MgFe<small><sub>0.5</sub></small>Mn<small><sub>0.5</sub></small>B<small><sub>2</sub></small>O<small><sub>5</sub></small>. Whilst promising first charge capacities up to 200 mAh g<small><sup>−1 </sup></small>are observed for ball-milled cathodes cycled at 55°C in a Li containing electrolyte, extensive post-cycling analysis using ex-situ X-ray Photoelectron Spectroscopy (XPS) and ex-situ Synchrotron Powder X-ray Diffraction (SXRD), combined with operando X-ray Absorption Spectroscopy (XAS) and operando Online Electrochemical Mass Spectrometry (OEMS), show that the capacities obtained are not associated with Mg<small><sup>2+</sup></small> mobility in the cathodes, de-magnesiation or transition-metal redox. The observed capacity originates from a process enhanced by ball-milling, which is common to all borate polyanions investigated in this work. This process is in part attributed to the irreversible reaction of an amorphous surface layer on the polycrystalline particle, rich in carbonate and glassy borate phases. Here we present the first systematic study of the viability of transition-metal borate polyanions as intercalation cathode materials for RMBs and conclude that, despite the promising electrochemistry, these materials do not de-magnesiate under our tested conditions.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"23 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Origin of the High Capacities Seen in Magnesium Borate Polyanion Cathodes\",\"authors\":\"Camilla Tacconis, Sunita Dey, Carson D. McLaughlin, Debashis Tripathy, Heather F. Greer, Shaoliang Guan, Iuliia Mikulska, Israel Temprano, Clare P. Grey, S. E. Dutton\",\"doi\":\"10.1039/d5ta07239e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent reviews have highlighted borate polyanion systems as promising high-voltage cathode candidates for rechargeable Mg-ion batteries (RMBs) [Coordination Chemistry Reviews, 427, 213551 (2021)]. However, evaluating the electrochemical performance of cathodes for Mg-ion batteries is challenging, with many reports relying on an observed electrochemical capacity rather than demonstrating Mg-ion (de)intercalation. To address these two points, we study three classes of borate polyanions: orthoborates M<small><sub>3</sub></small>(BO<small><sub>3</sub></small>)<small><sub>2</sub></small>, ludwigites M<small><sub>3</sub></small>BO<small><sub>5</sub></small>, and pyroborates M<small><sub>2</sub></small>B<small><sub>2</sub></small>O<small><sub>5</sub></small> and use a suite of experimental techniques to investigate de-magnesiation on charging vs Li metal with a Li electrolyte. We select five representative materials Mg<small><sub>2</sub></small>Mn(BO<small><sub>3</sub></small>)<small><sub>2</sub></small>, Mg<small><sub>2</sub></small>Ni(BO<small><sub>3</sub></small>)<small><sub>2</sub></small>, Mg<small><sub>2</sub></small>FeBO<small><sub>5</sub></small>, MgFeB<small><sub>2</sub></small>O<small><sub>5</sub></small> and MgFe<small><sub>0.5</sub></small>Mn<small><sub>0.5</sub></small>B<small><sub>2</sub></small>O<small><sub>5</sub></small>. Whilst promising first charge capacities up to 200 mAh g<small><sup>−1 </sup></small>are observed for ball-milled cathodes cycled at 55°C in a Li containing electrolyte, extensive post-cycling analysis using ex-situ X-ray Photoelectron Spectroscopy (XPS) and ex-situ Synchrotron Powder X-ray Diffraction (SXRD), combined with operando X-ray Absorption Spectroscopy (XAS) and operando Online Electrochemical Mass Spectrometry (OEMS), show that the capacities obtained are not associated with Mg<small><sup>2+</sup></small> mobility in the cathodes, de-magnesiation or transition-metal redox. The observed capacity originates from a process enhanced by ball-milling, which is common to all borate polyanions investigated in this work. This process is in part attributed to the irreversible reaction of an amorphous surface layer on the polycrystalline particle, rich in carbonate and glassy borate phases. Here we present the first systematic study of the viability of transition-metal borate polyanions as intercalation cathode materials for RMBs and conclude that, despite the promising electrochemistry, these materials do not de-magnesiate under our tested conditions.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5ta07239e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta07239e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究强调,硼酸盐聚阴离子体系是可充电镁离子电池(RMBs)的有前途的高压阴极候选者[配位化学评论,427,213551(2021)]。然而,评估镁离子电池阴极的电化学性能具有挑战性,许多报告依赖于观察到的电化学容量,而不是证明镁离子(脱)插层。为了解决这两个问题,我们研究了三种类型的硼酸盐聚阴离子:正硼酸盐M3(BO3)2, ludwigites M3BO5和焦硼酸盐M2B2O5,并使用一套实验技术研究了用锂电解质充电对锂金属的脱镁。我们选择了Mg2Mn(BO3)2、Mg2Ni(BO3)2、Mg2FeBO5、MgFeB2O5和MgFe0.5Mn0.5B2O5五种具有代表性的材料。虽然在含锂电解质中55°C循环的球磨阴极的首次充电容量有望达到200 mAh g - 1,但使用非原位x射线光电子能谱(XPS)和非原位同步加速器粉末x射线衍射(SXRD)进行的大量循环后分析,结合operando x射线吸收光谱(XAS)和operando在线电化学质谱(OEMS),表明所获得的容量与阴极中的Mg2+迁移率无关。脱镁或过渡金属氧化还原。所观察到的容量源于球磨增强的过程,这是本研究中所研究的所有硼酸盐聚阴离子的共同特点。这一过程的部分原因是多晶颗粒上的非晶表面层发生了不可逆反应,多晶颗粒富含碳酸盐和玻态硼酸盐相。在这里,我们首次系统地研究了过渡金属硼酸盐聚阴离子作为RMBs插层阴极材料的可行性,并得出结论,尽管电化学很有前途,但在我们的测试条件下,这些材料不会脱镁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deciphering the Origin of the High Capacities Seen in Magnesium Borate Polyanion Cathodes
Recent reviews have highlighted borate polyanion systems as promising high-voltage cathode candidates for rechargeable Mg-ion batteries (RMBs) [Coordination Chemistry Reviews, 427, 213551 (2021)]. However, evaluating the electrochemical performance of cathodes for Mg-ion batteries is challenging, with many reports relying on an observed electrochemical capacity rather than demonstrating Mg-ion (de)intercalation. To address these two points, we study three classes of borate polyanions: orthoborates M3(BO3)2, ludwigites M3BO5, and pyroborates M2B2O5 and use a suite of experimental techniques to investigate de-magnesiation on charging vs Li metal with a Li electrolyte. We select five representative materials Mg2Mn(BO3)2, Mg2Ni(BO3)2, Mg2FeBO5, MgFeB2O5 and MgFe0.5Mn0.5B2O5. Whilst promising first charge capacities up to 200 mAh g−1 are observed for ball-milled cathodes cycled at 55°C in a Li containing electrolyte, extensive post-cycling analysis using ex-situ X-ray Photoelectron Spectroscopy (XPS) and ex-situ Synchrotron Powder X-ray Diffraction (SXRD), combined with operando X-ray Absorption Spectroscopy (XAS) and operando Online Electrochemical Mass Spectrometry (OEMS), show that the capacities obtained are not associated with Mg2+ mobility in the cathodes, de-magnesiation or transition-metal redox. The observed capacity originates from a process enhanced by ball-milling, which is common to all borate polyanions investigated in this work. This process is in part attributed to the irreversible reaction of an amorphous surface layer on the polycrystalline particle, rich in carbonate and glassy borate phases. Here we present the first systematic study of the viability of transition-metal borate polyanions as intercalation cathode materials for RMBs and conclude that, despite the promising electrochemistry, these materials do not de-magnesiate under our tested conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信