Weiting Xu,Jing Huang,Jiayang Jiang,Peng Liu,Hongxu Gong,Jun Kang,Chengbao Jiang,Shengxue Yang
{"title":"用于二维电子学的亚毫米级氧化氯化钕单晶电介质。","authors":"Weiting Xu,Jing Huang,Jiayang Jiang,Peng Liu,Hongxu Gong,Jun Kang,Chengbao Jiang,Shengxue Yang","doi":"10.1002/adma.202510240","DOIUrl":null,"url":null,"abstract":"2D dielectrics integrated with atomically thin semiconductors hold immense potential to address the scaling challenges in future nanoelectronics. However, existing 2D dielectrics are limited by insufficient dielectric constants, poor interfacial quality, and degraded gate controllability. Here, a controlled synthesis of single-crystal neodymium oxychloride (NdOCl) nanosheets with submillimeter sizes (169 µm) and ultrathin thickness (5 nm) is presented using a modified physical vapor deposition (PVD) approach. The NdOCl nanosheets exhibit a high dielectric constant (κ≈11.7), ultralow leakage currents (≈10-7 A cm-2), and a wide bandgap of 4.57 eV. MoS2/NdOCl field-effect transistors (FETs) achieve high on/off current ratios (108), steep subthreshold swings, and suppressed Coulomb scattering, enabling a carrier mobility of 123 cm2 V-1 s-1 at 80 K, a value three times higher than MoS2/SiO2 FETs. The implementation of high-κ NdOCl dielectrics facilitates the successful fabrication of short-channel MoS2 FETs (100 nm) and high-gain logic inverters (60.9). These findings underscore the great potential of NdOCl as a next-generation 2D gate dielectric for advanced, miniaturized nanoelectronic applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"32 1","pages":"e10240"},"PeriodicalIF":26.8000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Submillimeter-Sized Neodymium Oxychloride Single-Crystal Dielectrics for 2D Electronics.\",\"authors\":\"Weiting Xu,Jing Huang,Jiayang Jiang,Peng Liu,Hongxu Gong,Jun Kang,Chengbao Jiang,Shengxue Yang\",\"doi\":\"10.1002/adma.202510240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2D dielectrics integrated with atomically thin semiconductors hold immense potential to address the scaling challenges in future nanoelectronics. However, existing 2D dielectrics are limited by insufficient dielectric constants, poor interfacial quality, and degraded gate controllability. Here, a controlled synthesis of single-crystal neodymium oxychloride (NdOCl) nanosheets with submillimeter sizes (169 µm) and ultrathin thickness (5 nm) is presented using a modified physical vapor deposition (PVD) approach. The NdOCl nanosheets exhibit a high dielectric constant (κ≈11.7), ultralow leakage currents (≈10-7 A cm-2), and a wide bandgap of 4.57 eV. MoS2/NdOCl field-effect transistors (FETs) achieve high on/off current ratios (108), steep subthreshold swings, and suppressed Coulomb scattering, enabling a carrier mobility of 123 cm2 V-1 s-1 at 80 K, a value three times higher than MoS2/SiO2 FETs. The implementation of high-κ NdOCl dielectrics facilitates the successful fabrication of short-channel MoS2 FETs (100 nm) and high-gain logic inverters (60.9). These findings underscore the great potential of NdOCl as a next-generation 2D gate dielectric for advanced, miniaturized nanoelectronic applications.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"32 1\",\"pages\":\"e10240\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202510240\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202510240","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
与原子薄半导体集成的二维介电体具有巨大的潜力,可以解决未来纳米电子学中的缩放挑战。然而,现有的二维介质受到介电常数不足、界面质量差和栅极可控性降低的限制。本文采用改进的物理气相沉积(PVD)方法合成了亚毫米尺寸(169 μ m)和超薄厚度(5 nm)的单晶氧化钕(NdOCl)纳米片。NdOCl纳米片具有高介电常数(κ≈11.7)、超低漏电流(≈10-7 a cm-2)和4.57 eV的宽禁带。MoS2/NdOCl场效应晶体管(fet)实现了高开/关电流比(108)、急剧的亚阈值波动和抑制的库仑散射,在80 K下实现了123 cm2 V-1 s-1的载流子迁移率,是MoS2/SiO2场效应晶体管的三倍。高κ NdOCl电介质的实现促进了短沟道MoS2 fet (100 nm)和高增益逻辑逆变器(60.9)的成功制造。这些发现强调了NdOCl作为先进、小型化纳米电子应用的下一代2D栅极电介质的巨大潜力。
Submillimeter-Sized Neodymium Oxychloride Single-Crystal Dielectrics for 2D Electronics.
2D dielectrics integrated with atomically thin semiconductors hold immense potential to address the scaling challenges in future nanoelectronics. However, existing 2D dielectrics are limited by insufficient dielectric constants, poor interfacial quality, and degraded gate controllability. Here, a controlled synthesis of single-crystal neodymium oxychloride (NdOCl) nanosheets with submillimeter sizes (169 µm) and ultrathin thickness (5 nm) is presented using a modified physical vapor deposition (PVD) approach. The NdOCl nanosheets exhibit a high dielectric constant (κ≈11.7), ultralow leakage currents (≈10-7 A cm-2), and a wide bandgap of 4.57 eV. MoS2/NdOCl field-effect transistors (FETs) achieve high on/off current ratios (108), steep subthreshold swings, and suppressed Coulomb scattering, enabling a carrier mobility of 123 cm2 V-1 s-1 at 80 K, a value three times higher than MoS2/SiO2 FETs. The implementation of high-κ NdOCl dielectrics facilitates the successful fabrication of short-channel MoS2 FETs (100 nm) and high-gain logic inverters (60.9). These findings underscore the great potential of NdOCl as a next-generation 2D gate dielectric for advanced, miniaturized nanoelectronic applications.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.