多金属氧酸簇核共组装合成二维杂化SnO2@WO3纳米片用于高效H2检测。

IF 9.1 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Jinwu Hu,Tao Xu,Lin Jin,Zijun Hong,Zhijie Song,Zhe Kong,Hui-Jun Li,Qiaobo Liao,Jingcheng Xu,Guisheng Li,Kaiping Yuan,Ding Wang
{"title":"多金属氧酸簇核共组装合成二维杂化SnO2@WO3纳米片用于高效H2检测。","authors":"Jinwu Hu,Tao Xu,Lin Jin,Zijun Hong,Zhijie Song,Zhe Kong,Hui-Jun Li,Qiaobo Liao,Jingcheng Xu,Guisheng Li,Kaiping Yuan,Ding Wang","doi":"10.1021/acssensors.5c02189","DOIUrl":null,"url":null,"abstract":"Hydrogen's extreme flammability and propensity for undetected leaks pose critical safety hazards in renewable energy and industrial systems, yet noble-metal-free sensors face intrinsic limitations in response kinetics and stability. Herein, we report a noble-metal-free hydrogen-sensitive SnO2@WO3 hexagonal nanosheets synthesized via a cluster-nucleus coassembly strategy. The bottom-up coassembly approach directs the interfacial self-assembly of WO3 clusters and SnO2 nuclei, enabling atomic-level coupling at the heterointerface. The SnO2@WO3 heterointerface modulates the W coordination environment, amplifying oxygen vacancy (Ov) density compared to that of pristine SnO2. Remarkably, the sensor based on SnO2@WO3 exhibited unique H2 gas sensing properties in the absence of catalytic sensitization of noble metals, including a high response value (Ra/Rg = 12.06 for 1000 ppm of H2), rapid response time (8 s), excellent selectivity, and long-term stability and durability. The synergy of the two-dimensional nanosheet morphology and interfacial Ov-rich heterojunction facilitates efficient gas diffusion, charge transfer, and dissociation. The H2 adsorption (-1.367 eV) and O2 dissociation (-0.767 eV) at interfacial Ov sites explain the performance enhancement. Furthermore, we present a fully integrated wireless sensor module for real-time H2 monitoring with smartphone visualization via Bluetooth. In addition, we also demonstrated how a sensor-integrated smart car can dynamically inspect hydrogen leaks. This work introduces a new paradigm for designing high-performance tunable heterostructures for next-generation gas detection.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"201 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional Hybrid SnO2@WO3 Nanosheets Synthesized by Polyoxometallate Cluster-Nucleus Coassembly for Highly Efficient H2 Detection.\",\"authors\":\"Jinwu Hu,Tao Xu,Lin Jin,Zijun Hong,Zhijie Song,Zhe Kong,Hui-Jun Li,Qiaobo Liao,Jingcheng Xu,Guisheng Li,Kaiping Yuan,Ding Wang\",\"doi\":\"10.1021/acssensors.5c02189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogen's extreme flammability and propensity for undetected leaks pose critical safety hazards in renewable energy and industrial systems, yet noble-metal-free sensors face intrinsic limitations in response kinetics and stability. Herein, we report a noble-metal-free hydrogen-sensitive SnO2@WO3 hexagonal nanosheets synthesized via a cluster-nucleus coassembly strategy. The bottom-up coassembly approach directs the interfacial self-assembly of WO3 clusters and SnO2 nuclei, enabling atomic-level coupling at the heterointerface. The SnO2@WO3 heterointerface modulates the W coordination environment, amplifying oxygen vacancy (Ov) density compared to that of pristine SnO2. Remarkably, the sensor based on SnO2@WO3 exhibited unique H2 gas sensing properties in the absence of catalytic sensitization of noble metals, including a high response value (Ra/Rg = 12.06 for 1000 ppm of H2), rapid response time (8 s), excellent selectivity, and long-term stability and durability. The synergy of the two-dimensional nanosheet morphology and interfacial Ov-rich heterojunction facilitates efficient gas diffusion, charge transfer, and dissociation. The H2 adsorption (-1.367 eV) and O2 dissociation (-0.767 eV) at interfacial Ov sites explain the performance enhancement. Furthermore, we present a fully integrated wireless sensor module for real-time H2 monitoring with smartphone visualization via Bluetooth. In addition, we also demonstrated how a sensor-integrated smart car can dynamically inspect hydrogen leaks. This work introduces a new paradigm for designing high-performance tunable heterostructures for next-generation gas detection.\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"201 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssensors.5c02189\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.5c02189","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

氢的极端可燃性和未被发现的泄漏倾向在可再生能源和工业系统中构成了严重的安全隐患,但无贵金属传感器在响应动力学和稳定性方面面临着内在的限制。在此,我们报告了一种通过簇核共组装策略合成的无贵金属氢敏感SnO2@WO3六方纳米片。自下而上的共组装方法指导WO3簇和SnO2核的界面自组装,实现了异质界面上的原子级耦合。SnO2@WO3异质界面调节了W配位环境,与原始SnO2相比,增加了氧空位(Ov)密度。值得注意的是,基于SnO2@WO3的传感器在没有贵金属催化敏化的情况下表现出独特的H2气体传感性能,包括高响应值(1000 ppm H2时Ra/Rg = 12.06)、快速响应时间(8 s)、优异的选择性、长期稳定性和耐用性。二维纳米片形态和界面富ov异质结的协同作用促进了有效的气体扩散、电荷转移和解离。界面Ov位点的H2吸附(-1.367 eV)和O2解离(-0.767 eV)解释了性能的增强。此外,我们提出了一个完全集成的无线传感器模块,用于通过蓝牙智能手机实时监测氢气。此外,我们还演示了集成传感器的智能汽车如何动态检测氢气泄漏。这项工作为设计用于下一代气体探测的高性能可调谐异质结构引入了一种新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Dimensional Hybrid SnO2@WO3 Nanosheets Synthesized by Polyoxometallate Cluster-Nucleus Coassembly for Highly Efficient H2 Detection.
Hydrogen's extreme flammability and propensity for undetected leaks pose critical safety hazards in renewable energy and industrial systems, yet noble-metal-free sensors face intrinsic limitations in response kinetics and stability. Herein, we report a noble-metal-free hydrogen-sensitive SnO2@WO3 hexagonal nanosheets synthesized via a cluster-nucleus coassembly strategy. The bottom-up coassembly approach directs the interfacial self-assembly of WO3 clusters and SnO2 nuclei, enabling atomic-level coupling at the heterointerface. The SnO2@WO3 heterointerface modulates the W coordination environment, amplifying oxygen vacancy (Ov) density compared to that of pristine SnO2. Remarkably, the sensor based on SnO2@WO3 exhibited unique H2 gas sensing properties in the absence of catalytic sensitization of noble metals, including a high response value (Ra/Rg = 12.06 for 1000 ppm of H2), rapid response time (8 s), excellent selectivity, and long-term stability and durability. The synergy of the two-dimensional nanosheet morphology and interfacial Ov-rich heterojunction facilitates efficient gas diffusion, charge transfer, and dissociation. The H2 adsorption (-1.367 eV) and O2 dissociation (-0.767 eV) at interfacial Ov sites explain the performance enhancement. Furthermore, we present a fully integrated wireless sensor module for real-time H2 monitoring with smartphone visualization via Bluetooth. In addition, we also demonstrated how a sensor-integrated smart car can dynamically inspect hydrogen leaks. This work introduces a new paradigm for designing high-performance tunable heterostructures for next-generation gas detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信