{"title":"通过智能水凝胶微结构刺激诱导生物聚合物网络的机械压实","authors":"Vicente Salas-Quiroz, Katharina Esch, Katja Zieske","doi":"10.1039/d5lc00477b","DOIUrl":null,"url":null,"abstract":"The remodeling of the extracellular matrix by mechanical forces plays a crucial role in organizing cellular microenvironments. To study these mechanical perturbations, various methods have been developed to modify the cellular microenvironment and to apply controlled forces. However, most existing approaches rely either on instruments that cannot be integrated into lab-on-chip systems or on small probes with limited spatiotemporal precision. In this work, a lab-on-chip system enables spatially and temporally controlled mechanical perturbations of biological polymer networks. First, thermoresponsive hydrogel microstructures within flow chambers are fabricated and their material composition and photopolymerization parameters are optimized. Second, the expansion of hydrogel microstructures upon a temporally controlled temperature stimulus, results in compression of Matrigel and collagen networks. Following compression, Matrigel is plastically deformed, whereas the collagen network relaxes elastically. Finally, the compression of collagen networks is spatially modulated by integrating hydrogel structures responsive to light stimuli. By mimicking the pushing forces of cells that remodel biological polymer networks, the presented smart hydrogel microstructures provide a versatile system for future studies on extracellular matrix remodeling and the effects of mechanical forces on cellular microenvironments in both physiological and pathological contexts.","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":"100 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stimulus-Induced Mechanical Compaction of Biological Polymer Networks via Smart Hydrogel Microstructures\",\"authors\":\"Vicente Salas-Quiroz, Katharina Esch, Katja Zieske\",\"doi\":\"10.1039/d5lc00477b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The remodeling of the extracellular matrix by mechanical forces plays a crucial role in organizing cellular microenvironments. To study these mechanical perturbations, various methods have been developed to modify the cellular microenvironment and to apply controlled forces. However, most existing approaches rely either on instruments that cannot be integrated into lab-on-chip systems or on small probes with limited spatiotemporal precision. In this work, a lab-on-chip system enables spatially and temporally controlled mechanical perturbations of biological polymer networks. First, thermoresponsive hydrogel microstructures within flow chambers are fabricated and their material composition and photopolymerization parameters are optimized. Second, the expansion of hydrogel microstructures upon a temporally controlled temperature stimulus, results in compression of Matrigel and collagen networks. Following compression, Matrigel is plastically deformed, whereas the collagen network relaxes elastically. Finally, the compression of collagen networks is spatially modulated by integrating hydrogel structures responsive to light stimuli. By mimicking the pushing forces of cells that remodel biological polymer networks, the presented smart hydrogel microstructures provide a versatile system for future studies on extracellular matrix remodeling and the effects of mechanical forces on cellular microenvironments in both physiological and pathological contexts.\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d5lc00477b\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5lc00477b","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Stimulus-Induced Mechanical Compaction of Biological Polymer Networks via Smart Hydrogel Microstructures
The remodeling of the extracellular matrix by mechanical forces plays a crucial role in organizing cellular microenvironments. To study these mechanical perturbations, various methods have been developed to modify the cellular microenvironment and to apply controlled forces. However, most existing approaches rely either on instruments that cannot be integrated into lab-on-chip systems or on small probes with limited spatiotemporal precision. In this work, a lab-on-chip system enables spatially and temporally controlled mechanical perturbations of biological polymer networks. First, thermoresponsive hydrogel microstructures within flow chambers are fabricated and their material composition and photopolymerization parameters are optimized. Second, the expansion of hydrogel microstructures upon a temporally controlled temperature stimulus, results in compression of Matrigel and collagen networks. Following compression, Matrigel is plastically deformed, whereas the collagen network relaxes elastically. Finally, the compression of collagen networks is spatially modulated by integrating hydrogel structures responsive to light stimuli. By mimicking the pushing forces of cells that remodel biological polymer networks, the presented smart hydrogel microstructures provide a versatile system for future studies on extracellular matrix remodeling and the effects of mechanical forces on cellular microenvironments in both physiological and pathological contexts.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.