具有抑制陷阱态和增强性能的菌株工程PbS量子点太阳能电池。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jing Li,Xiaobo Ding,Wei Dong,Zhao Luo,Jianxun Wang,Yulu Hua,Ziqi Song,Zeyu Miao,Mengyao Liu,Jingyu Qian,Wenxu Yin,William W Yu,Zeke Liu,Xiaoyu Zhang,Weitao Zheng
{"title":"具有抑制陷阱态和增强性能的菌株工程PbS量子点太阳能电池。","authors":"Jing Li,Xiaobo Ding,Wei Dong,Zhao Luo,Jianxun Wang,Yulu Hua,Ziqi Song,Zeyu Miao,Mengyao Liu,Jingyu Qian,Wenxu Yin,William W Yu,Zeke Liu,Xiaoyu Zhang,Weitao Zheng","doi":"10.1021/acs.nanolett.5c03779","DOIUrl":null,"url":null,"abstract":"Surface strain in quantum dot (QD) films, while not a defect itself, can distort the local lattice environment and promote the formation of electronic trap states, ultimately limiting charge transport and device performance. Here, we introduce a strain-modulation strategy using guanidinium iodide (GAI) to partially disrupt the continuous PbI2-based ligand shell on PbS QDs. By relaxing the interfacial lattice strain by 53%, strain-induced trap states are suppressed, improving carrier transport in QD films. Solar cells based on these optimized films achieve a power conversion efficiency of 14.2%, compared to 12.5% in control devices. This study underscores the critical role of surface strain as a hidden regulator of electronic quality in QD solids and offers a new avenue for interfacial strain management in solution-processed optoelectronics.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"32 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-Engineered PbS Quantum Dot Solar Cells with Suppressed Trap States and Enhanced Performance.\",\"authors\":\"Jing Li,Xiaobo Ding,Wei Dong,Zhao Luo,Jianxun Wang,Yulu Hua,Ziqi Song,Zeyu Miao,Mengyao Liu,Jingyu Qian,Wenxu Yin,William W Yu,Zeke Liu,Xiaoyu Zhang,Weitao Zheng\",\"doi\":\"10.1021/acs.nanolett.5c03779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface strain in quantum dot (QD) films, while not a defect itself, can distort the local lattice environment and promote the formation of electronic trap states, ultimately limiting charge transport and device performance. Here, we introduce a strain-modulation strategy using guanidinium iodide (GAI) to partially disrupt the continuous PbI2-based ligand shell on PbS QDs. By relaxing the interfacial lattice strain by 53%, strain-induced trap states are suppressed, improving carrier transport in QD films. Solar cells based on these optimized films achieve a power conversion efficiency of 14.2%, compared to 12.5% in control devices. This study underscores the critical role of surface strain as a hidden regulator of electronic quality in QD solids and offers a new avenue for interfacial strain management in solution-processed optoelectronics.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c03779\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c03779","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子点(QD)薄膜中的表面应变虽然本身不是缺陷,但会扭曲局部晶格环境并促进电子陷阱态的形成,最终限制电荷输运和器件性能。在这里,我们引入了一种使用碘化胍(GAI)的菌株调制策略来部分破坏PbS量子点上连续的pbi2基配体壳。通过将界面晶格应变放松53%,抑制了应变诱导的陷阱态,改善了量子点薄膜中的载流子输运。基于这些优化薄膜的太阳能电池实现了14.2%的功率转换效率,而控制设备的功率转换效率为12.5%。该研究强调了表面应变作为QD固体中电子质量的隐藏调节器的关键作用,并为溶液加工光电子学中的界面应变管理提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strain-Engineered PbS Quantum Dot Solar Cells with Suppressed Trap States and Enhanced Performance.
Surface strain in quantum dot (QD) films, while not a defect itself, can distort the local lattice environment and promote the formation of electronic trap states, ultimately limiting charge transport and device performance. Here, we introduce a strain-modulation strategy using guanidinium iodide (GAI) to partially disrupt the continuous PbI2-based ligand shell on PbS QDs. By relaxing the interfacial lattice strain by 53%, strain-induced trap states are suppressed, improving carrier transport in QD films. Solar cells based on these optimized films achieve a power conversion efficiency of 14.2%, compared to 12.5% in control devices. This study underscores the critical role of surface strain as a hidden regulator of electronic quality in QD solids and offers a new avenue for interfacial strain management in solution-processed optoelectronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信