基于SAS功能和硝酸盐同位素的农业流域硝酸盐输出的水文和生物地球化学耦合响应

IF 5 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Minghui Sha, Zhongjie Yu, Paolo Benettin, Lowell E. Gentry, Corey A. Mitchell
{"title":"基于SAS功能和硝酸盐同位素的农业流域硝酸盐输出的水文和生物地球化学耦合响应","authors":"Minghui Sha, Zhongjie Yu, Paolo Benettin, Lowell E. Gentry, Corey A. Mitchell","doi":"10.1029/2024wr039718","DOIUrl":null,"url":null,"abstract":"The combination of high nitrogen (N) inputs on tile‐drained agricultural watersheds contributes to excessive nitrate (NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>) loss to surface‐ and groundwater systems. This study combined water age modeling based on StorAge Selection functions and NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> isotopic analysis to examine the underlying mechanisms driving NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> export in an intensively tile‐drained mesoscale watershed typical of the U.S. Upper Midwest. The water age modeling revealed a pronounced inverse storage effect and strong young water preference under high‐flow conditions, emphasizing evolving water mixing behavior driven by groundwater fluctuation and tile drain activation. Integrating NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> concentration‐isotope‐discharge relationships with water age dynamics disentangled the interactions between flow path variations and subsurface N cycling in shaping seasonally variable NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> export regimes at the watershed scale. Based on these results, a simple transit time‐based and isotope‐aided NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> transport model was developed to estimate the timescales of watershed‐scale NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> reactive transport. Model results demonstrated variable NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> source availability and a wetness dependence for denitrification, indicating that interannual NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> chemostasis is driven by coupled and proportional responses of soil NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> production, denitrification, and flow path activation to varying antecedent wetness conditions. These findings suggest that intensively tile‐drained Midwestern agricultural watersheds function as both N transporters and transformers and may respond to large‐scale mitigation efforts within a relatively short timeframe. Collectively, the results of this study demonstrate the potential of integrated water age modeling and NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> isotopic analysis to advance the understanding of macroscale principles governing coupled watershed hydrologic and N biogeochemical functions.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"32 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled Hydrologic and Biogeochemical Responses of Nitrate Export in a Tile‐Drained Agricultural Watershed Revealed by SAS Functions and Nitrate Isotopes\",\"authors\":\"Minghui Sha, Zhongjie Yu, Paolo Benettin, Lowell E. Gentry, Corey A. Mitchell\",\"doi\":\"10.1029/2024wr039718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of high nitrogen (N) inputs on tile‐drained agricultural watersheds contributes to excessive nitrate (NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>) loss to surface‐ and groundwater systems. This study combined water age modeling based on StorAge Selection functions and NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> isotopic analysis to examine the underlying mechanisms driving NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> export in an intensively tile‐drained mesoscale watershed typical of the U.S. Upper Midwest. The water age modeling revealed a pronounced inverse storage effect and strong young water preference under high‐flow conditions, emphasizing evolving water mixing behavior driven by groundwater fluctuation and tile drain activation. Integrating NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> concentration‐isotope‐discharge relationships with water age dynamics disentangled the interactions between flow path variations and subsurface N cycling in shaping seasonally variable NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> export regimes at the watershed scale. Based on these results, a simple transit time‐based and isotope‐aided NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> transport model was developed to estimate the timescales of watershed‐scale NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> reactive transport. Model results demonstrated variable NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> source availability and a wetness dependence for denitrification, indicating that interannual NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> chemostasis is driven by coupled and proportional responses of soil NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> production, denitrification, and flow path activation to varying antecedent wetness conditions. These findings suggest that intensively tile‐drained Midwestern agricultural watersheds function as both N transporters and transformers and may respond to large‐scale mitigation efforts within a relatively short timeframe. Collectively, the results of this study demonstrate the potential of integrated water age modeling and NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup> isotopic analysis to advance the understanding of macroscale principles governing coupled watershed hydrologic and N biogeochemical functions.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024wr039718\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr039718","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

高氮(N)输入对排水农业流域的影响导致过量的硝酸盐(NO3−)流失到地表水和地下水系统。本研究将基于储存选择函数的水龄模型和NO3 -同位素分析相结合,研究了美国中西部典型中尺度流域集中排水NO3 -输出的潜在机制。水年龄模型揭示了高流量条件下明显的逆储存效应和强烈的年轻水偏好,强调了地下水波动和排水激活驱动的水混合行为的演化。将NO3−浓度-同位素-排放关系与水龄动力学相结合,揭示了径流路径变化与地下N循环之间的相互作用,形成了流域尺度上季节性变化的NO3−输出机制。基于这些结果,建立了一个简单的基于传输时间和同位素辅助的NO3 -输运模型来估计流域尺度NO3 -反应输运的时间尺度。模型结果表明,NO3−源有效性和反硝化的湿度依赖性是可变的,表明土壤NO3−生成、反硝化和流动路径激活对不同先前湿度条件的耦合和比例响应驱动了年际NO3−化学平衡。这些发现表明,密集排水的中西部农业流域兼具氮转运和转化的功能,并可能在相对较短的时间内对大规模的缓解措施做出反应。总的来说,本研究的结果表明,综合水龄模型和NO3 -同位素分析在促进对流域水文和N生物地球化学耦合功能的宏观尺度原理的理解方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupled Hydrologic and Biogeochemical Responses of Nitrate Export in a Tile‐Drained Agricultural Watershed Revealed by SAS Functions and Nitrate Isotopes
The combination of high nitrogen (N) inputs on tile‐drained agricultural watersheds contributes to excessive nitrate (NO3) loss to surface‐ and groundwater systems. This study combined water age modeling based on StorAge Selection functions and NO3 isotopic analysis to examine the underlying mechanisms driving NO3 export in an intensively tile‐drained mesoscale watershed typical of the U.S. Upper Midwest. The water age modeling revealed a pronounced inverse storage effect and strong young water preference under high‐flow conditions, emphasizing evolving water mixing behavior driven by groundwater fluctuation and tile drain activation. Integrating NO3 concentration‐isotope‐discharge relationships with water age dynamics disentangled the interactions between flow path variations and subsurface N cycling in shaping seasonally variable NO3 export regimes at the watershed scale. Based on these results, a simple transit time‐based and isotope‐aided NO3 transport model was developed to estimate the timescales of watershed‐scale NO3 reactive transport. Model results demonstrated variable NO3 source availability and a wetness dependence for denitrification, indicating that interannual NO3 chemostasis is driven by coupled and proportional responses of soil NO3 production, denitrification, and flow path activation to varying antecedent wetness conditions. These findings suggest that intensively tile‐drained Midwestern agricultural watersheds function as both N transporters and transformers and may respond to large‐scale mitigation efforts within a relatively short timeframe. Collectively, the results of this study demonstrate the potential of integrated water age modeling and NO3 isotopic analysis to advance the understanding of macroscale principles governing coupled watershed hydrologic and N biogeochemical functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信