Xi Ding, Shamima Zaman, Emily P. Africa, Bahman Anvari, Elaine D. Haberer
{"title":"燃料驱动的丝状噬菌体纳米马达","authors":"Xi Ding, Shamima Zaman, Emily P. Africa, Bahman Anvari, Elaine D. Haberer","doi":"10.1039/d5nr02501j","DOIUrl":null,"url":null,"abstract":"Virus-based nanocarriers have shown great potential for noninvasive delivery of drugs, diagnostics, and imaging agents to hard-to-reach anatomical locations. Yet, they largely depend on diffusion for transport, often lacking the force to actively penetrate biological barriers, and navigation to guide therapeutic agents. In these studies, the M13 bacteriophage, a linearly shaped virus, was converted from passive nanocarrier to actively propelled, fuel-driven nanomotor. Using the distinctive low symmetry of its capsid, a single Pt nanoparticle was added to one end of the M13 virus to form a tadpole-like structure. The Pt/M13 head/tail nanomotors exhibited notably enhanced diffusion in the presence of hydrogen peroxide fuel, and significantly improved uptake by SVOK3 ovarian cancer cells in vitro. Given the successes of the M13 bacteriophage as a nanocarrier, the demonstration of this simple, but comparatively mobile M13-based nanomotor platform represents an important step in advancing the potential therapeutic efficacy of viral nanocarriers.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"5 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuel-driven filamentous phage nanomotors\",\"authors\":\"Xi Ding, Shamima Zaman, Emily P. Africa, Bahman Anvari, Elaine D. Haberer\",\"doi\":\"10.1039/d5nr02501j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virus-based nanocarriers have shown great potential for noninvasive delivery of drugs, diagnostics, and imaging agents to hard-to-reach anatomical locations. Yet, they largely depend on diffusion for transport, often lacking the force to actively penetrate biological barriers, and navigation to guide therapeutic agents. In these studies, the M13 bacteriophage, a linearly shaped virus, was converted from passive nanocarrier to actively propelled, fuel-driven nanomotor. Using the distinctive low symmetry of its capsid, a single Pt nanoparticle was added to one end of the M13 virus to form a tadpole-like structure. The Pt/M13 head/tail nanomotors exhibited notably enhanced diffusion in the presence of hydrogen peroxide fuel, and significantly improved uptake by SVOK3 ovarian cancer cells in vitro. Given the successes of the M13 bacteriophage as a nanocarrier, the demonstration of this simple, but comparatively mobile M13-based nanomotor platform represents an important step in advancing the potential therapeutic efficacy of viral nanocarriers.\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nr02501j\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr02501j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Virus-based nanocarriers have shown great potential for noninvasive delivery of drugs, diagnostics, and imaging agents to hard-to-reach anatomical locations. Yet, they largely depend on diffusion for transport, often lacking the force to actively penetrate biological barriers, and navigation to guide therapeutic agents. In these studies, the M13 bacteriophage, a linearly shaped virus, was converted from passive nanocarrier to actively propelled, fuel-driven nanomotor. Using the distinctive low symmetry of its capsid, a single Pt nanoparticle was added to one end of the M13 virus to form a tadpole-like structure. The Pt/M13 head/tail nanomotors exhibited notably enhanced diffusion in the presence of hydrogen peroxide fuel, and significantly improved uptake by SVOK3 ovarian cancer cells in vitro. Given the successes of the M13 bacteriophage as a nanocarrier, the demonstration of this simple, but comparatively mobile M13-based nanomotor platform represents an important step in advancing the potential therapeutic efficacy of viral nanocarriers.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.