初始组织持续效应对cocrfeni基高熵合金组织和力学性能演变的影响

IF 14.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kai-Wen Kang, Ao-Xiang Li, Ming-Kun Xu, Sai-Ke Liu, Yi-Teng Jiang, Peng Cao, Gong Li
{"title":"初始组织持续效应对cocrfeni基高熵合金组织和力学性能演变的影响","authors":"Kai-Wen Kang, Ao-Xiang Li, Ming-Kun Xu, Sai-Ke Liu, Yi-Teng Jiang, Peng Cao, Gong Li","doi":"10.1016/j.jmst.2025.09.032","DOIUrl":null,"url":null,"abstract":"Thermomechanical processing is commonly employed to tailor the microstructure and enhance the mechanical properties of high entropy alloys (HEAs). However, the influence of the initial microstructure prior to deformation has received limited attention. In this study, we systematically investigate the influence of initial grain structure on microstructural evolution and mechanical performance in HEAs. Alloys with varying recrystallization degrees and initial grain sizes were fabricated. Results show that smaller initial grains promote finer recrystallized structures due to higher grain boundary density and stored energy. Notably, the recrystallized grain morphology exhibited strong persistence from the initial microstructure. Initial grain size also influenced precipitation behavior. Larger grains favored spherical precipitates and continuous precipitation, while smaller grains promoted lamellar precipitation. Tensile testing at room temperature revealed that the fully recrystallized alloy with the finest initial grains achieved the optimal strength-ductility combination, exhibiting a yield strength of 1567<span><span><math><mo is=\"true\">±</mo></math></span><script type=\"math/mml\"><math><mo is=\"true\">±</mo></math></script></span>32 MPa, an ultimate tensile strength of 1844<span><span><math><mo is=\"true\">±</mo></math></span><script type=\"math/mml\"><math><mo is=\"true\">±</mo></math></script></span>47 MPa, and a total elongation of (20.4<span><span><math><mo is=\"true\">±</mo></math></span><script type=\"math/mml\"><math><mo is=\"true\">±</mo></math></script></span>1.0)%. These findings highlight the pivotal role of initial microstructure in dictating recrystallization and precipitation pathways, offering a practical strategy for optimizing HEA performance through microstructural design.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"68 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of persistent effects of initial microstructure on the evolution of microstructure and mechanical properties in CoCrFeNi-based high entropy alloys\",\"authors\":\"Kai-Wen Kang, Ao-Xiang Li, Ming-Kun Xu, Sai-Ke Liu, Yi-Teng Jiang, Peng Cao, Gong Li\",\"doi\":\"10.1016/j.jmst.2025.09.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermomechanical processing is commonly employed to tailor the microstructure and enhance the mechanical properties of high entropy alloys (HEAs). However, the influence of the initial microstructure prior to deformation has received limited attention. In this study, we systematically investigate the influence of initial grain structure on microstructural evolution and mechanical performance in HEAs. Alloys with varying recrystallization degrees and initial grain sizes were fabricated. Results show that smaller initial grains promote finer recrystallized structures due to higher grain boundary density and stored energy. Notably, the recrystallized grain morphology exhibited strong persistence from the initial microstructure. Initial grain size also influenced precipitation behavior. Larger grains favored spherical precipitates and continuous precipitation, while smaller grains promoted lamellar precipitation. Tensile testing at room temperature revealed that the fully recrystallized alloy with the finest initial grains achieved the optimal strength-ductility combination, exhibiting a yield strength of 1567<span><span><math><mo is=\\\"true\\\">±</mo></math></span><script type=\\\"math/mml\\\"><math><mo is=\\\"true\\\">±</mo></math></script></span>32 MPa, an ultimate tensile strength of 1844<span><span><math><mo is=\\\"true\\\">±</mo></math></span><script type=\\\"math/mml\\\"><math><mo is=\\\"true\\\">±</mo></math></script></span>47 MPa, and a total elongation of (20.4<span><span><math><mo is=\\\"true\\\">±</mo></math></span><script type=\\\"math/mml\\\"><math><mo is=\\\"true\\\">±</mo></math></script></span>1.0)%. These findings highlight the pivotal role of initial microstructure in dictating recrystallization and precipitation pathways, offering a practical strategy for optimizing HEA performance through microstructural design.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2025.09.032\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.09.032","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热机械加工通常用于调整高熵合金(HEAs)的显微组织和提高其力学性能。然而,变形前的初始微观组织的影响得到了有限的关注。在本研究中,我们系统地研究了初始晶粒结构对HEAs微观组织演变和力学性能的影响。制备了不同再结晶程度和初始晶粒尺寸的合金。结果表明,晶粒越小,晶界密度越大,晶界蓄能越大,再结晶组织越细。值得注意的是,再结晶的晶粒形态与初始组织相比具有较强的持久性。初始晶粒尺寸也影响析出行为。晶粒较大有利于球形析出和连续析出,而晶粒较小有利于片层析出。室温拉伸试验结果表明,具有最细初始晶粒的完全再结晶合金获得了最佳的强度-塑性组合,屈服强度为1567±±32 MPa,极限抗拉强度为1844±±47 MPa,总伸长率为(20.4±±1.0)%。这些发现强调了初始微观结构在决定再结晶和沉淀路径中的关键作用,为通过微观结构设计优化HEA性能提供了实用的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of persistent effects of initial microstructure on the evolution of microstructure and mechanical properties in CoCrFeNi-based high entropy alloys

Influence of persistent effects of initial microstructure on the evolution of microstructure and mechanical properties in CoCrFeNi-based high entropy alloys
Thermomechanical processing is commonly employed to tailor the microstructure and enhance the mechanical properties of high entropy alloys (HEAs). However, the influence of the initial microstructure prior to deformation has received limited attention. In this study, we systematically investigate the influence of initial grain structure on microstructural evolution and mechanical performance in HEAs. Alloys with varying recrystallization degrees and initial grain sizes were fabricated. Results show that smaller initial grains promote finer recrystallized structures due to higher grain boundary density and stored energy. Notably, the recrystallized grain morphology exhibited strong persistence from the initial microstructure. Initial grain size also influenced precipitation behavior. Larger grains favored spherical precipitates and continuous precipitation, while smaller grains promoted lamellar precipitation. Tensile testing at room temperature revealed that the fully recrystallized alloy with the finest initial grains achieved the optimal strength-ductility combination, exhibiting a yield strength of 1567±32 MPa, an ultimate tensile strength of 1844±47 MPa, and a total elongation of (20.4±1.0)%. These findings highlight the pivotal role of initial microstructure in dictating recrystallization and precipitation pathways, offering a practical strategy for optimizing HEA performance through microstructural design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信