原位化学转化法生长镁铝层双氢氧化物薄膜:室温NO2传感

IF 3.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Shweta Talekar, Prashant Sawant, Shraddha Pawar, Shashikant Patole, Mayura Medhekar, Ganesh Khande, Sayali Kulkarni, Hemraj Yadav, Jayavant Gunjakar
{"title":"原位化学转化法生长镁铝层双氢氧化物薄膜:室温NO2传感","authors":"Shweta Talekar, Prashant Sawant, Shraddha Pawar, Shashikant Patole, Mayura Medhekar, Ganesh Khande, Sayali Kulkarni, Hemraj Yadav, Jayavant Gunjakar","doi":"10.1016/j.snb.2025.138890","DOIUrl":null,"url":null,"abstract":"The direct deposition of layered double hydroxide on a substrate is highly desirable for a gas sensor. In this work, we demonstrate the direct deposition of magnesium-aluminum-layered double hydroxide (MA-LDH) thin film (TF) by chemical conversion of magnesium oxide (MgO) TF. The chemical conversion of MgO TFs produces well-crystalline, porous microsheets composed of an interconnected nanoparticle network of MA-LDH, which provides an enhanced surface area with a highly accessible framework, making MA-LDH TFs promising candidates for efficient gas sensor electrodes. Furthermore, the resulting MA-LDH TFs are tested as resistive sensor electrodes to detect different oxidizing (SO<sub>2</sub>, Cl<sub>2</sub>, and NO<sub>2</sub>) and reducing (LPG, CO, CO<sub>2</sub>, H<sub>2</sub>, H<sub>2</sub>S, and NH<sub>3</sub>) gases. The MA-LDH TF exhibited excellent selectivity towards NO<sub>2</sub> gas with a maximum response of 54% at room temperature (300 ± 2<!-- --> <!-- -->K) compared to pristine MgO TFs (14%) at 473<!-- --> <!-- -->K for 100 ppm. Also, it exhibits a quick response time of 10<!-- --> <!-- -->s, a detection limit of 0.02 ppm, and prolonged stability. Of prime interest is that the MA-LDH sensor displayed high tolerance to humidity conditions. The excellent NO<sub>2</sub> sensing performance of the MA-LDH TFs is attributed to the expanded surface area, which is composed of porous microsheets formed by interconnected nanoparticles network. The direct deposition of an interconnected microsheet network provides abundant active adsorption sites, thereby enhancing gas sensing efficiency.","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"101 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Situ Chemical Conversion Approach for Growth of Magnesium-Aluminium-Layered Double Hydroxide Thin Films: Room Temperature NO2 Sensing\",\"authors\":\"Shweta Talekar, Prashant Sawant, Shraddha Pawar, Shashikant Patole, Mayura Medhekar, Ganesh Khande, Sayali Kulkarni, Hemraj Yadav, Jayavant Gunjakar\",\"doi\":\"10.1016/j.snb.2025.138890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The direct deposition of layered double hydroxide on a substrate is highly desirable for a gas sensor. In this work, we demonstrate the direct deposition of magnesium-aluminum-layered double hydroxide (MA-LDH) thin film (TF) by chemical conversion of magnesium oxide (MgO) TF. The chemical conversion of MgO TFs produces well-crystalline, porous microsheets composed of an interconnected nanoparticle network of MA-LDH, which provides an enhanced surface area with a highly accessible framework, making MA-LDH TFs promising candidates for efficient gas sensor electrodes. Furthermore, the resulting MA-LDH TFs are tested as resistive sensor electrodes to detect different oxidizing (SO<sub>2</sub>, Cl<sub>2</sub>, and NO<sub>2</sub>) and reducing (LPG, CO, CO<sub>2</sub>, H<sub>2</sub>, H<sub>2</sub>S, and NH<sub>3</sub>) gases. The MA-LDH TF exhibited excellent selectivity towards NO<sub>2</sub> gas with a maximum response of 54% at room temperature (300 ± 2<!-- --> <!-- -->K) compared to pristine MgO TFs (14%) at 473<!-- --> <!-- -->K for 100 ppm. Also, it exhibits a quick response time of 10<!-- --> <!-- -->s, a detection limit of 0.02 ppm, and prolonged stability. Of prime interest is that the MA-LDH sensor displayed high tolerance to humidity conditions. The excellent NO<sub>2</sub> sensing performance of the MA-LDH TFs is attributed to the expanded surface area, which is composed of porous microsheets formed by interconnected nanoparticles network. The direct deposition of an interconnected microsheet network provides abundant active adsorption sites, thereby enhancing gas sensing efficiency.\",\"PeriodicalId\":425,\"journal\":{\"name\":\"Sensors and Actuators B: Chemical\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators B: Chemical\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.snb.2025.138890\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.snb.2025.138890","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

在衬底上直接沉积层状双氢氧化物对于气体传感器来说是非常理想的。在这项工作中,我们展示了通过氧化镁(MgO) TF的化学转化直接沉积镁铝层状双氢氧化物(MA-LDH)薄膜(TF)。MgO TFs的化学转化产生了由MA-LDH相互连接的纳米颗粒网络组成的结晶良好的多孔微片,它提供了一个高度可访问的框架的增强表面积,使MA-LDH TFs成为高效气体传感器电极的有希望的候选者。此外,将生成的MA-LDH tf作为电阻式传感器电极进行测试,以检测不同的氧化性(SO2、Cl2和NO2)和还原性(LPG、CO、CO2、H2、H2S和NH3)气体。MA-LDH TF对NO2气体表现出优异的选择性,在室温(300±2 K)下的最大响应为54%,而原始MgO TF在473 K、100 ppm下的最大响应为14%。此外,它还具有10 s的快速响应时间,0.02 ppm的检测限和较长的稳定性。最重要的是,MA-LDH传感器对湿度条件的耐受性很高。MA-LDH TFs具有优异的NO2传感性能,其表面面积扩大,由相互连接的纳米颗粒网络组成的多孔微片组成。微片网络的直接沉积提供了丰富的活性吸附位点,从而提高了气敏效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In-Situ Chemical Conversion Approach for Growth of Magnesium-Aluminium-Layered Double Hydroxide Thin Films: Room Temperature NO2 Sensing

In-Situ Chemical Conversion Approach for Growth of Magnesium-Aluminium-Layered Double Hydroxide Thin Films: Room Temperature NO2 Sensing
The direct deposition of layered double hydroxide on a substrate is highly desirable for a gas sensor. In this work, we demonstrate the direct deposition of magnesium-aluminum-layered double hydroxide (MA-LDH) thin film (TF) by chemical conversion of magnesium oxide (MgO) TF. The chemical conversion of MgO TFs produces well-crystalline, porous microsheets composed of an interconnected nanoparticle network of MA-LDH, which provides an enhanced surface area with a highly accessible framework, making MA-LDH TFs promising candidates for efficient gas sensor electrodes. Furthermore, the resulting MA-LDH TFs are tested as resistive sensor electrodes to detect different oxidizing (SO2, Cl2, and NO2) and reducing (LPG, CO, CO2, H2, H2S, and NH3) gases. The MA-LDH TF exhibited excellent selectivity towards NO2 gas with a maximum response of 54% at room temperature (300 ± 2 K) compared to pristine MgO TFs (14%) at 473 K for 100 ppm. Also, it exhibits a quick response time of 10 s, a detection limit of 0.02 ppm, and prolonged stability. Of prime interest is that the MA-LDH sensor displayed high tolerance to humidity conditions. The excellent NO2 sensing performance of the MA-LDH TFs is attributed to the expanded surface area, which is composed of porous microsheets formed by interconnected nanoparticles network. The direct deposition of an interconnected microsheet network provides abundant active adsorption sites, thereby enhancing gas sensing efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators B: Chemical
Sensors and Actuators B: Chemical 工程技术-电化学
CiteScore
14.60
自引率
11.90%
发文量
1776
审稿时长
3.2 months
期刊介绍: Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信