{"title":"通过位点解耦铜催化解锁高浓度PET升级回收","authors":"Chuan Gang, Jingqing Tian, Bing Ma, Chen Zhao","doi":"10.1002/anie.202516357","DOIUrl":null,"url":null,"abstract":"Upcycling polyethylene terephthalate (PET) plastic waste on islands into valuable fuels represents a promising strategy for carbon resource utilization and circular economy development; however, this approach faces critical challenges, including low processing concentrations (currently <jats:italic>C</jats:italic><jats:sub>PET</jats:sub> < 1.5 wt%) and fast catalyst deactivation under high‐temperature redox conditions. Herein, we report a site‐decoupled copper catalyst (Cu/MgAlGaZnO<jats:sub>x</jats:sub>) that unlocks quantitative conversion of PET to <jats:italic>p</jats:italic>‐xylene (PX) at unprecedented concentrations (15.1 wt%), achieving a record PX formation rate of 10.1 −7.8‐fold higher than prior CuNa/SiO<jats:sub>2</jats:sub> systems. In situ spectroscopy reveals that ethylene glycol (EG) fragment oxidation during depolymerization reduces Cu<jats:sup>+</jats:sup> species in conventional catalysts, triggering rapid deactivation. By contrast, oxygen vacancies (O<jats:sub>v</jats:sub>) in the GaZnO<jats:sub>x</jats:sub> support adsorb methanolysis intermediates, spatially segregating depolymerization (GaZnO<jats:sub>x</jats:sub>) from hydrodeoxygenation (Cu/MgAlO<jats:sub>x</jats:sub>). This decoupling stabilizes active Cu⁺/Cu<jats:sup>0</jats:sup>─O<jats:sub>v</jats:sub> sites, enabling sustained operation at high PET concentrations. Our work establishes site decoupling as a general strategy for stabilizing redox catalysts in polymer upcycling under demanding environments.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"1 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking High‐Concentration PET Upcycling via Site‐Decoupled Copper Catalysis\",\"authors\":\"Chuan Gang, Jingqing Tian, Bing Ma, Chen Zhao\",\"doi\":\"10.1002/anie.202516357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Upcycling polyethylene terephthalate (PET) plastic waste on islands into valuable fuels represents a promising strategy for carbon resource utilization and circular economy development; however, this approach faces critical challenges, including low processing concentrations (currently <jats:italic>C</jats:italic><jats:sub>PET</jats:sub> < 1.5 wt%) and fast catalyst deactivation under high‐temperature redox conditions. Herein, we report a site‐decoupled copper catalyst (Cu/MgAlGaZnO<jats:sub>x</jats:sub>) that unlocks quantitative conversion of PET to <jats:italic>p</jats:italic>‐xylene (PX) at unprecedented concentrations (15.1 wt%), achieving a record PX formation rate of 10.1 −7.8‐fold higher than prior CuNa/SiO<jats:sub>2</jats:sub> systems. In situ spectroscopy reveals that ethylene glycol (EG) fragment oxidation during depolymerization reduces Cu<jats:sup>+</jats:sup> species in conventional catalysts, triggering rapid deactivation. By contrast, oxygen vacancies (O<jats:sub>v</jats:sub>) in the GaZnO<jats:sub>x</jats:sub> support adsorb methanolysis intermediates, spatially segregating depolymerization (GaZnO<jats:sub>x</jats:sub>) from hydrodeoxygenation (Cu/MgAlO<jats:sub>x</jats:sub>). This decoupling stabilizes active Cu⁺/Cu<jats:sup>0</jats:sup>─O<jats:sub>v</jats:sub> sites, enabling sustained operation at high PET concentrations. Our work establishes site decoupling as a general strategy for stabilizing redox catalysts in polymer upcycling under demanding environments.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202516357\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202516357","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Unlocking High‐Concentration PET Upcycling via Site‐Decoupled Copper Catalysis
Upcycling polyethylene terephthalate (PET) plastic waste on islands into valuable fuels represents a promising strategy for carbon resource utilization and circular economy development; however, this approach faces critical challenges, including low processing concentrations (currently CPET < 1.5 wt%) and fast catalyst deactivation under high‐temperature redox conditions. Herein, we report a site‐decoupled copper catalyst (Cu/MgAlGaZnOx) that unlocks quantitative conversion of PET to p‐xylene (PX) at unprecedented concentrations (15.1 wt%), achieving a record PX formation rate of 10.1 −7.8‐fold higher than prior CuNa/SiO2 systems. In situ spectroscopy reveals that ethylene glycol (EG) fragment oxidation during depolymerization reduces Cu+ species in conventional catalysts, triggering rapid deactivation. By contrast, oxygen vacancies (Ov) in the GaZnOx support adsorb methanolysis intermediates, spatially segregating depolymerization (GaZnOx) from hydrodeoxygenation (Cu/MgAlOx). This decoupling stabilizes active Cu⁺/Cu0─Ov sites, enabling sustained operation at high PET concentrations. Our work establishes site decoupling as a general strategy for stabilizing redox catalysts in polymer upcycling under demanding environments.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.