普鲁士白阴极内禀缺陷的多尺度表征:桥接缺陷化学与结构和电化学性能

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xianda Wang, Ruixue Wu, Ziming Zhang, Xiaoxia Li, Wei‐Feng Huang, Hao Wang, Hui Ying Yang, Yang Shang
{"title":"普鲁士白阴极内禀缺陷的多尺度表征:桥接缺陷化学与结构和电化学性能","authors":"Xianda Wang, Ruixue Wu, Ziming Zhang, Xiaoxia Li, Wei‐Feng Huang, Hao Wang, Hui Ying Yang, Yang Shang","doi":"10.1002/adfm.202521753","DOIUrl":null,"url":null,"abstract":"Prussian White (PW) is a highly promising cathode material for sodium‐ and potassium‐ion batteries. However, its typical co‐precipitation synthesis inevitably introduces intrinsic structural defects—most notably [Fe(CN)<jats:sub>6</jats:sub>] vacancies (<jats:italic>V</jats:italic><jats:sub>FeCN</jats:sub>)—which critically undermine electrochemical performance. Given the thermodynamic and kinetic inevitability of these vacancies, merely suppressing their formation is insufficient. Instead, a deep understanding of their formation mechanisms, structural roles, and degradation pathways is essential for performance optimization. This review systematically deconstructs the types and origins of intrinsic vacancies in PW—including <jats:italic>V</jats:italic><jats:sub>FeCN</jats:sub>, transition metal vacancies (<jats:italic>V</jats:italic><jats:sub>TM</jats:sub>), and cyanide ligand vacancies (<jats:italic>V</jats:italic><jats:sub>CN</jats:sub>)—with a particular emphasis on the conditions that govern <jats:italic>V</jats:italic><jats:sub>FeCN</jats:sub> generation. More importantly, it establishes a multidimensional, multiscale defect characterization framework, spanning electronic structure, atomic coordination, crystal order, and mesoscale morphology. Beyond characterization, the review correlates vacancy chemistry with key electrochemical consequences. <jats:italic>V</jats:italic><jats:sub>FeCN</jats:sub> defects reduce alkali‐ion storage sites, disrupt continuous ion transport pathways, and trigger interfacial side reactions—collectively leading to capacity fading, rate deterioration, limited cycling life, poor low‐temperature performance, and thermal instability. By bridging intrinsic defect chemistry with macroscopic electrochemical performance, this review provides a strategic roadmap for defect‐informed design of robust and high‐efficiency PW cathodes.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"93 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Characterization of Intrinsic Defects in Prussian White Cathodes: Bridging Defect Chemistry with Structure and Electrochemical Performance\",\"authors\":\"Xianda Wang, Ruixue Wu, Ziming Zhang, Xiaoxia Li, Wei‐Feng Huang, Hao Wang, Hui Ying Yang, Yang Shang\",\"doi\":\"10.1002/adfm.202521753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prussian White (PW) is a highly promising cathode material for sodium‐ and potassium‐ion batteries. However, its typical co‐precipitation synthesis inevitably introduces intrinsic structural defects—most notably [Fe(CN)<jats:sub>6</jats:sub>] vacancies (<jats:italic>V</jats:italic><jats:sub>FeCN</jats:sub>)—which critically undermine electrochemical performance. Given the thermodynamic and kinetic inevitability of these vacancies, merely suppressing their formation is insufficient. Instead, a deep understanding of their formation mechanisms, structural roles, and degradation pathways is essential for performance optimization. This review systematically deconstructs the types and origins of intrinsic vacancies in PW—including <jats:italic>V</jats:italic><jats:sub>FeCN</jats:sub>, transition metal vacancies (<jats:italic>V</jats:italic><jats:sub>TM</jats:sub>), and cyanide ligand vacancies (<jats:italic>V</jats:italic><jats:sub>CN</jats:sub>)—with a particular emphasis on the conditions that govern <jats:italic>V</jats:italic><jats:sub>FeCN</jats:sub> generation. More importantly, it establishes a multidimensional, multiscale defect characterization framework, spanning electronic structure, atomic coordination, crystal order, and mesoscale morphology. Beyond characterization, the review correlates vacancy chemistry with key electrochemical consequences. <jats:italic>V</jats:italic><jats:sub>FeCN</jats:sub> defects reduce alkali‐ion storage sites, disrupt continuous ion transport pathways, and trigger interfacial side reactions—collectively leading to capacity fading, rate deterioration, limited cycling life, poor low‐temperature performance, and thermal instability. By bridging intrinsic defect chemistry with macroscopic electrochemical performance, this review provides a strategic roadmap for defect‐informed design of robust and high‐efficiency PW cathodes.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202521753\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202521753","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

普鲁士白(PW)是一种极有前途的钠离子和钾离子电池正极材料。然而,其典型的共沉淀法不可避免地引入了固有的结构缺陷——最明显的是[Fe(CN)6]空位(VFeCN)——这严重破坏了电化学性能。考虑到这些空位的热力学和动力学必然性,仅仅抑制它们的形成是不够的。相反,深入了解它们的形成机制、结构作用和降解途径对性能优化至关重要。本文系统地解构了pw中固有空位的类型和来源,包括VFeCN、过渡金属空位(VTM)和氰化物配位空位(VCN),并特别强调了控制VFeCN生成的条件。更重要的是,它建立了一个多维、多尺度的缺陷表征框架,涵盖了电子结构、原子配位、晶体有序和中尺度形貌。除了表征之外,该综述还将空位化学与关键的电化学结果联系起来。VFeCN缺陷减少了碱离子的储存位置,破坏了连续的离子传输途径,并引发了界面副反应,这些共同导致了容量衰退、速率恶化、循环寿命有限、低温性能差和热不稳定性。通过将内在缺陷化学与宏观电化学性能联系起来,本综述为设计坚固高效的PW阴极提供了一种基于缺陷的战略路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale Characterization of Intrinsic Defects in Prussian White Cathodes: Bridging Defect Chemistry with Structure and Electrochemical Performance
Prussian White (PW) is a highly promising cathode material for sodium‐ and potassium‐ion batteries. However, its typical co‐precipitation synthesis inevitably introduces intrinsic structural defects—most notably [Fe(CN)6] vacancies (VFeCN)—which critically undermine electrochemical performance. Given the thermodynamic and kinetic inevitability of these vacancies, merely suppressing their formation is insufficient. Instead, a deep understanding of their formation mechanisms, structural roles, and degradation pathways is essential for performance optimization. This review systematically deconstructs the types and origins of intrinsic vacancies in PW—including VFeCN, transition metal vacancies (VTM), and cyanide ligand vacancies (VCN)—with a particular emphasis on the conditions that govern VFeCN generation. More importantly, it establishes a multidimensional, multiscale defect characterization framework, spanning electronic structure, atomic coordination, crystal order, and mesoscale morphology. Beyond characterization, the review correlates vacancy chemistry with key electrochemical consequences. VFeCN defects reduce alkali‐ion storage sites, disrupt continuous ion transport pathways, and trigger interfacial side reactions—collectively leading to capacity fading, rate deterioration, limited cycling life, poor low‐temperature performance, and thermal instability. By bridging intrinsic defect chemistry with macroscopic electrochemical performance, this review provides a strategic roadmap for defect‐informed design of robust and high‐efficiency PW cathodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信