基于变换光学的高阶异常点拓扑工程

IF 10 1区 物理与天体物理 Q1 OPTICS
Kaiyuan Wang, Qi Jie Wang, Matthew R. Foreman, Yu Luo
{"title":"基于变换光学的高阶异常点拓扑工程","authors":"Kaiyuan Wang, Qi Jie Wang, Matthew R. Foreman, Yu Luo","doi":"10.1002/lpor.202500593","DOIUrl":null,"url":null,"abstract":"Exceptional points (EPs) in non‐Hermitian photonic systems have attracted considerable research interest due to their singular eigenvalue topology and associated anomalous physical phenomena. These properties enable diverse applications ranging from enhanced quantum metrology to chiral light‐matter interactions. Practical implementation of high order EPs in optical platforms however remains fundamentally challenging, requiring precise multi‐parameter control that often exceeds conventional design capabilities. This work presents a novel framework for engineering high order EPs through transformation optics (TO) principles, establishing a direct correspondence between mathematical singularities and physically controllable parameters. This TO‐based paradigm addresses critical limitations in conventional Hamiltonian approaches, where abstract parameter spaces lack explicit connections to experimentally accessible degrees of freedom, while simultaneously providing full mode solutions. In contrast to prevailing parity‐time‐symmetric architectures, this methodology eliminates symmetry constraints in EP design, significantly expanding the possibilities in non‐Hermitian photonic engineering. The proposed technique enables control over EP formation and evolution in nanophotonic systems, offering new pathways for developing topological optical devices with enhanced functionality and robustness.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"70 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological Engineering of High‐Order Exceptional Points Through Transformation Optics\",\"authors\":\"Kaiyuan Wang, Qi Jie Wang, Matthew R. Foreman, Yu Luo\",\"doi\":\"10.1002/lpor.202500593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exceptional points (EPs) in non‐Hermitian photonic systems have attracted considerable research interest due to their singular eigenvalue topology and associated anomalous physical phenomena. These properties enable diverse applications ranging from enhanced quantum metrology to chiral light‐matter interactions. Practical implementation of high order EPs in optical platforms however remains fundamentally challenging, requiring precise multi‐parameter control that often exceeds conventional design capabilities. This work presents a novel framework for engineering high order EPs through transformation optics (TO) principles, establishing a direct correspondence between mathematical singularities and physically controllable parameters. This TO‐based paradigm addresses critical limitations in conventional Hamiltonian approaches, where abstract parameter spaces lack explicit connections to experimentally accessible degrees of freedom, while simultaneously providing full mode solutions. In contrast to prevailing parity‐time‐symmetric architectures, this methodology eliminates symmetry constraints in EP design, significantly expanding the possibilities in non‐Hermitian photonic engineering. The proposed technique enables control over EP formation and evolution in nanophotonic systems, offering new pathways for developing topological optical devices with enhanced functionality and robustness.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202500593\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202500593","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

非厄米光子系统中的异常点(EPs)由于其奇异特征值拓扑结构和相关的异常物理现象而引起了相当大的研究兴趣。这些特性使从增强量子计量到手性光物质相互作用的各种应用成为可能。然而,在光学平台上实际实现高阶EPs仍然具有根本性的挑战性,需要精确的多参数控制,通常超出传统设计能力。本文提出了一种利用变换光学原理实现高阶EPs工程的新框架,建立了数学奇点与物理可控参数之间的直接对应关系。这种基于TO的范式解决了传统哈密顿方法的关键限制,其中抽象参数空间缺乏与实验可访问自由度的明确联系,同时提供全模式解决方案。与流行的宇称-时间对称体系结构相比,这种方法消除了EP设计中的对称性限制,极大地扩展了非厄米光子工程的可能性。所提出的技术能够控制纳米光子系统中EP的形成和演化,为开发具有增强功能和鲁棒性的拓扑光学器件提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological Engineering of High‐Order Exceptional Points Through Transformation Optics
Exceptional points (EPs) in non‐Hermitian photonic systems have attracted considerable research interest due to their singular eigenvalue topology and associated anomalous physical phenomena. These properties enable diverse applications ranging from enhanced quantum metrology to chiral light‐matter interactions. Practical implementation of high order EPs in optical platforms however remains fundamentally challenging, requiring precise multi‐parameter control that often exceeds conventional design capabilities. This work presents a novel framework for engineering high order EPs through transformation optics (TO) principles, establishing a direct correspondence between mathematical singularities and physically controllable parameters. This TO‐based paradigm addresses critical limitations in conventional Hamiltonian approaches, where abstract parameter spaces lack explicit connections to experimentally accessible degrees of freedom, while simultaneously providing full mode solutions. In contrast to prevailing parity‐time‐symmetric architectures, this methodology eliminates symmetry constraints in EP design, significantly expanding the possibilities in non‐Hermitian photonic engineering. The proposed technique enables control over EP formation and evolution in nanophotonic systems, offering new pathways for developing topological optical devices with enhanced functionality and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信