基于YOLOv5的深度学习多光谱血细胞图像分析。

IF 2.3
Gang Li, Guiming Fu, Honghui Zeng, Kang Wang, Jerin Tasnim Humayra, Guizhong Liu, Ling Lin
{"title":"基于YOLOv5的深度学习多光谱血细胞图像分析。","authors":"Gang Li, Guiming Fu, Honghui Zeng, Kang Wang, Jerin Tasnim Humayra, Guizhong Liu, Ling Lin","doi":"10.1002/jbio.202500384","DOIUrl":null,"url":null,"abstract":"<p><p>Blood cell counting is vital for medical diagnosis, and image recognition offers an automated approach. While most studies rely on microscopic images, these provide limited information. In contrast, multispectral imaging captures additional optical characteristics, improving the delineation of cellular boundaries and structures. This paper presents a blood cell recognition method based on multispectral imaging and YOLOv5. Blood cell images at five wavelengths were fused for multispectral information. The standard and modified YOLOv5 models were trained and tested on single-wavelength and multispectral images. Experimental results demonstrate that, compared with single-wavelength imaging, multispectral imaging markedly enhances the recognition performance of blood cells, yielding identification precision values of 99.9% for red blood cells and 96.1% for platelets. For white blood cells, which are relatively scarce, the recognition precision reached 98.9%, representing a 12.26% improvement over the best-performing single-wavelength model. Multispectral imaging shows significant potential for high-precision detection of rare cells.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500384"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multispectral Blood Cell Image Analysis via Deep Learning With YOLOv5.\",\"authors\":\"Gang Li, Guiming Fu, Honghui Zeng, Kang Wang, Jerin Tasnim Humayra, Guizhong Liu, Ling Lin\",\"doi\":\"10.1002/jbio.202500384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Blood cell counting is vital for medical diagnosis, and image recognition offers an automated approach. While most studies rely on microscopic images, these provide limited information. In contrast, multispectral imaging captures additional optical characteristics, improving the delineation of cellular boundaries and structures. This paper presents a blood cell recognition method based on multispectral imaging and YOLOv5. Blood cell images at five wavelengths were fused for multispectral information. The standard and modified YOLOv5 models were trained and tested on single-wavelength and multispectral images. Experimental results demonstrate that, compared with single-wavelength imaging, multispectral imaging markedly enhances the recognition performance of blood cells, yielding identification precision values of 99.9% for red blood cells and 96.1% for platelets. For white blood cells, which are relatively scarce, the recognition precision reached 98.9%, representing a 12.26% improvement over the best-performing single-wavelength model. Multispectral imaging shows significant potential for high-precision detection of rare cells.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e202500384\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202500384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

血细胞计数对医学诊断至关重要,而图像识别提供了一种自动化的方法。虽然大多数研究依赖于显微图像,但这些图像提供的信息有限。相比之下,多光谱成像捕获了额外的光学特性,改善了细胞边界和结构的描绘。提出了一种基于多光谱成像和YOLOv5的血细胞识别方法。在五个波长的血细胞图像融合多光谱信息。分别在单波长和多光谱图像上对YOLOv5模型进行训练和测试。实验结果表明,与单波长成像相比,多光谱成像显著提高了血细胞的识别性能,对红细胞和血小板的识别精度分别达到99.9%和96.1%。对于相对稀缺的白细胞,识别精度达到98.9%,比性能最好的单波长模型提高了12.26%。多光谱成像显示出对稀有细胞进行高精度检测的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multispectral Blood Cell Image Analysis via Deep Learning With YOLOv5.

Blood cell counting is vital for medical diagnosis, and image recognition offers an automated approach. While most studies rely on microscopic images, these provide limited information. In contrast, multispectral imaging captures additional optical characteristics, improving the delineation of cellular boundaries and structures. This paper presents a blood cell recognition method based on multispectral imaging and YOLOv5. Blood cell images at five wavelengths were fused for multispectral information. The standard and modified YOLOv5 models were trained and tested on single-wavelength and multispectral images. Experimental results demonstrate that, compared with single-wavelength imaging, multispectral imaging markedly enhances the recognition performance of blood cells, yielding identification precision values of 99.9% for red blood cells and 96.1% for platelets. For white blood cells, which are relatively scarce, the recognition precision reached 98.9%, representing a 12.26% improvement over the best-performing single-wavelength model. Multispectral imaging shows significant potential for high-precision detection of rare cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信