{"title":"在线错误控制的adis -图及其在平台试验中的应用。","authors":"Lasse Fischer, Marta Bofill Roig, Werner Brannath","doi":"10.1002/bimj.70075","DOIUrl":null,"url":null,"abstract":"<p>In contemporary research, online error control is often required, where an error criterion, such as familywise error rate (FWER) or false discovery rate (FDR), shall remain under control while testing an a priori unbounded sequence of hypotheses. The existing online literature mainly considered large-scale studies and constructed powerful but rigid algorithms for these. However, smaller studies, such as platform trials, require high flexibility and easy interpretability to take study objectives into account and facilitate the communication. Another challenge in platform trials is that due to the shared control arm some of the <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-values are dependent and significance levels need to be prespecified before the decisions for all the past treatments are available. We propose adaptive-discarding-Graphs (ADDIS-Graphs) with FWER control that due to their graphical structure perfectly adapt to such settings and provably uniformly improve the state-of-the-art method. We introduce several extensions of these ADDIS-Graphs, including the incorporation of information about the joint distribution of the <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-values and a version for FDR control.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476829/pdf/","citationCount":"0","resultStr":"{\"title\":\"ADDIS-Graphs for Online Error Control With Application to Platform Trials\",\"authors\":\"Lasse Fischer, Marta Bofill Roig, Werner Brannath\",\"doi\":\"10.1002/bimj.70075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In contemporary research, online error control is often required, where an error criterion, such as familywise error rate (FWER) or false discovery rate (FDR), shall remain under control while testing an a priori unbounded sequence of hypotheses. The existing online literature mainly considered large-scale studies and constructed powerful but rigid algorithms for these. However, smaller studies, such as platform trials, require high flexibility and easy interpretability to take study objectives into account and facilitate the communication. Another challenge in platform trials is that due to the shared control arm some of the <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-values are dependent and significance levels need to be prespecified before the decisions for all the past treatments are available. We propose adaptive-discarding-Graphs (ADDIS-Graphs) with FWER control that due to their graphical structure perfectly adapt to such settings and provably uniformly improve the state-of-the-art method. We introduce several extensions of these ADDIS-Graphs, including the incorporation of information about the joint distribution of the <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-values and a version for FDR control.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"67 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476829/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70075\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70075","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
ADDIS-Graphs for Online Error Control With Application to Platform Trials
In contemporary research, online error control is often required, where an error criterion, such as familywise error rate (FWER) or false discovery rate (FDR), shall remain under control while testing an a priori unbounded sequence of hypotheses. The existing online literature mainly considered large-scale studies and constructed powerful but rigid algorithms for these. However, smaller studies, such as platform trials, require high flexibility and easy interpretability to take study objectives into account and facilitate the communication. Another challenge in platform trials is that due to the shared control arm some of the -values are dependent and significance levels need to be prespecified before the decisions for all the past treatments are available. We propose adaptive-discarding-Graphs (ADDIS-Graphs) with FWER control that due to their graphical structure perfectly adapt to such settings and provably uniformly improve the state-of-the-art method. We introduce several extensions of these ADDIS-Graphs, including the incorporation of information about the joint distribution of the -values and a version for FDR control.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.