DeepPhysioRecon:低频fMRI动态追踪外周生理。

Imaging neuroscience (Cambridge, Mass.) Pub Date : 2025-09-25 eCollection Date: 2025-01-01 DOI:10.1162/IMAG.a.163
Roza G Bayrak, Colin B Hansen, Jorge A Salas, Nafis Ahmed, Ilwoo Lyu, Mara Mather, Yuankai Huo, Catie Chang
{"title":"DeepPhysioRecon:低频fMRI动态追踪外周生理。","authors":"Roza G Bayrak, Colin B Hansen, Jorge A Salas, Nafis Ahmed, Ilwoo Lyu, Mara Mather, Yuankai Huo, Catie Chang","doi":"10.1162/IMAG.a.163","DOIUrl":null,"url":null,"abstract":"<p><p>Many studies of the human brain using functional magnetic resonance imaging (fMRI) lack physiological measurements, which substantially impacts the interpretation and richness of fMRI studies. Natural fluctuations in autonomic physiology, such as breathing and heart rate, provide windows into critical functions, including cognition, emotion, and health, and can heavily influence fMRI signals. Here, we developed <i>DeepPhysioRecon</i>, a Long-Short-Term-Memory (LSTM)-based network that decodes continuous variations in respiration amplitude and heart rate directly from whole-brain fMRI dynamics. Through systematic evaluations, we investigate the generalizability of this approach across datasets and experimental conditions. We also demonstrate the importance of including these measures in fMRI analyses. This work highlights the importance of studying brain-body interactions, proposes a tool that may enhance the efficacy of fMRI as a biomarker, and provides widely applicable open-source software.</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464743/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>DeepPhysioRecon</i>: Tracing peripheral physiology in low frequency fMRI dynamics.\",\"authors\":\"Roza G Bayrak, Colin B Hansen, Jorge A Salas, Nafis Ahmed, Ilwoo Lyu, Mara Mather, Yuankai Huo, Catie Chang\",\"doi\":\"10.1162/IMAG.a.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many studies of the human brain using functional magnetic resonance imaging (fMRI) lack physiological measurements, which substantially impacts the interpretation and richness of fMRI studies. Natural fluctuations in autonomic physiology, such as breathing and heart rate, provide windows into critical functions, including cognition, emotion, and health, and can heavily influence fMRI signals. Here, we developed <i>DeepPhysioRecon</i>, a Long-Short-Term-Memory (LSTM)-based network that decodes continuous variations in respiration amplitude and heart rate directly from whole-brain fMRI dynamics. Through systematic evaluations, we investigate the generalizability of this approach across datasets and experimental conditions. We also demonstrate the importance of including these measures in fMRI analyses. This work highlights the importance of studying brain-body interactions, proposes a tool that may enhance the efficacy of fMRI as a biomarker, and provides widely applicable open-source software.</p>\",\"PeriodicalId\":73341,\"journal\":{\"name\":\"Imaging neuroscience (Cambridge, Mass.)\",\"volume\":\"3 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464743/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Imaging neuroscience (Cambridge, Mass.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/IMAG.a.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/IMAG.a.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多使用功能磁共振成像(fMRI)的人脑研究缺乏生理测量,这极大地影响了功能磁共振成像研究的解释和丰富性。自主神经生理学的自然波动,如呼吸和心率,为认知、情感和健康等关键功能提供了窗口,并能严重影响功能磁共振成像信号。在这里,我们开发了DeepPhysioRecon,这是一个基于长短期记忆(LSTM)的网络,可以直接从全脑fMRI动态中解码呼吸幅度和心率的连续变化。通过系统评估,我们研究了这种方法在数据集和实验条件下的普遍性。我们还证明了在fMRI分析中包括这些措施的重要性。这项工作强调了研究脑-体相互作用的重要性,提出了一种可能提高fMRI作为生物标志物功效的工具,并提供了广泛适用的开源软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepPhysioRecon: Tracing peripheral physiology in low frequency fMRI dynamics.

Many studies of the human brain using functional magnetic resonance imaging (fMRI) lack physiological measurements, which substantially impacts the interpretation and richness of fMRI studies. Natural fluctuations in autonomic physiology, such as breathing and heart rate, provide windows into critical functions, including cognition, emotion, and health, and can heavily influence fMRI signals. Here, we developed DeepPhysioRecon, a Long-Short-Term-Memory (LSTM)-based network that decodes continuous variations in respiration amplitude and heart rate directly from whole-brain fMRI dynamics. Through systematic evaluations, we investigate the generalizability of this approach across datasets and experimental conditions. We also demonstrate the importance of including these measures in fMRI analyses. This work highlights the importance of studying brain-body interactions, proposes a tool that may enhance the efficacy of fMRI as a biomarker, and provides widely applicable open-source software.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信