Zachariah D Levey, Benjamin A Laws, Christopher S Hansen, John F Stanton, Scott H Kable, Timothy W Schmidt
{"title":"苯烯基自由基的光谱分析。","authors":"Zachariah D Levey, Benjamin A Laws, Christopher S Hansen, John F Stanton, Scott H Kable, Timothy W Schmidt","doi":"10.1021/acsphyschemau.5c00052","DOIUrl":null,"url":null,"abstract":"<p><p>Jet-cooled excitation spectra of the phenalenyl radical are obtained using resonance enhanced multiphoton ionization. The excitation spectra reveal previously unobserved transitions, up to 17,000 cm<sup>-1</sup> above the D<sub>1</sub> origin, including transitions to electronically forbidden A<sub>2</sub> <sup>″</sup> electronic states. A quasi-diabatic approach is applied to construct a vibronic Hamiltonian, including both Jahn-Teller and <i>pseudo</i>-Jahn-Teller interactions, between seven excited electronic surfaces. This is employed to calculate the electronic excitation spectrum of the phenalenyl radical in its entirety, providing vibronic assignments and spectral parameters to help decode the spectroscopy of this key radical.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 5","pages":"560-568"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464889/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Spectroscopy of the Phenalenyl Radical.\",\"authors\":\"Zachariah D Levey, Benjamin A Laws, Christopher S Hansen, John F Stanton, Scott H Kable, Timothy W Schmidt\",\"doi\":\"10.1021/acsphyschemau.5c00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Jet-cooled excitation spectra of the phenalenyl radical are obtained using resonance enhanced multiphoton ionization. The excitation spectra reveal previously unobserved transitions, up to 17,000 cm<sup>-1</sup> above the D<sub>1</sub> origin, including transitions to electronically forbidden A<sub>2</sub> <sup>″</sup> electronic states. A quasi-diabatic approach is applied to construct a vibronic Hamiltonian, including both Jahn-Teller and <i>pseudo</i>-Jahn-Teller interactions, between seven excited electronic surfaces. This is employed to calculate the electronic excitation spectrum of the phenalenyl radical in its entirety, providing vibronic assignments and spectral parameters to help decode the spectroscopy of this key radical.</p>\",\"PeriodicalId\":29796,\"journal\":{\"name\":\"ACS Physical Chemistry Au\",\"volume\":\"5 5\",\"pages\":\"560-568\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464889/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Physical Chemistry Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphyschemau.5c00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/24 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsphyschemau.5c00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/24 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Unraveling the Spectroscopy of the Phenalenyl Radical.
Jet-cooled excitation spectra of the phenalenyl radical are obtained using resonance enhanced multiphoton ionization. The excitation spectra reveal previously unobserved transitions, up to 17,000 cm-1 above the D1 origin, including transitions to electronically forbidden A2″ electronic states. A quasi-diabatic approach is applied to construct a vibronic Hamiltonian, including both Jahn-Teller and pseudo-Jahn-Teller interactions, between seven excited electronic surfaces. This is employed to calculate the electronic excitation spectrum of the phenalenyl radical in its entirety, providing vibronic assignments and spectral parameters to help decode the spectroscopy of this key radical.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis